4 research outputs found
Distributed Environment for Efficient Virtual Machine Image Management in Federated Cloud Architectures
The use of Virtual Machines (VM) in Cloud computing provides various benefits in the overall software engineering lifecycle. These include efficient elasticity mechanisms resulting in higher resource utilization and lower operational costs. VM as software artifacts are created using provider-specific templates, called VM images (VMI), and are stored in proprietary or public repositories for further use. However, some technology specific choices can limit the interoperability among various Cloud providers and bundle the VMIs with nonessential or redundant software packages, leading to increased storage size, prolonged VMI delivery, stagnant VMI instantiation and ultimately vendor lock-in. To address these challenges, we present a set of novel functionalities and design approaches for efficient operation of distributed VMI repositories, specifically tailored for enabling: (i) simplified creation of lightweight and size optimized VMIs tuned for specific application requirements; (ii) multi-objective VMI repository optimization; and (iii) efficient reasoning mechanism to help optimizing complex VMI operations. The evaluation results confirm that the presented approaches can enable VMI size reduction by up to 55%, while trimming the image creation time by 66%. Furthermore, the repository optimization algorithms, can reduce the VMI delivery time by up to 51% and cut down the storage expenses by 3%. Moreover, by implementing replication strategies, the optimization algorithms can increase the system reliability by 74%
Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection
Background: Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. Methods: This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. Results and conclusion: The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed
The computing continuum : From IoT to the cloud
In the era of the IoT revolution, applications are becoming ever more sophisticated and accompanied by diverse functional and non-functional requirements, including those related to computing resources and performance levels. Such requirements make the development and implementation of these applications complex and challenging. Computing models, such as cloud computing, can provide applications with on-demand computation and storage resources to meet their needs. Although cloud computing is a great enabler for IoT and endpoint devices, its limitations make it unsuitable to fulfill all design goals of novel applications and use cases. Instead of only relying on cloud computing, leveraging and integrating resources at different layers (like IoT, edge, and cloud) is necessary to form and utilize a computing continuum. The layers’ integration in the computing continuum offers a wide range of innovative services, but it introduces new challenges (e.g., monitoring performance and ensuring security) that need to be investigated. A better grasp and more profound understanding of the computing continuum can guide researchers and developers in tackling and overcoming such challenges. Thus, this paper provides a comprehensive and unified view of the computing continuum. The paper discusses computing models in general with a focus on cloud computing, the computing models that emerged beyond the cloud, and the communication technologies that enable computing in the continuum. In addition, two novel reference architectures are presented in this work: one for edge–cloud computing models and the other for edge–cloud communication technologies. We demonstrate real use cases from different application domains (like industry and science) to validate the proposed reference architectures, and we show how these use cases map onto the reference architectures. Finally, the paper highlights key points that express the authors’ vision about efficiently enabling and utilizing the computing continuum in the future. © 2024 The Author(s