43 research outputs found

    Fishing the Molecular Bases of Treacher Collins Syndrome

    Get PDF
    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Biocompatibility of hemodialysis membranes: Interrelations between plasma complement and cytokine levels

    No full text
    Hemodialysis (HD) membrane biocompatibility is defined as absence of complement activation. We have recently shown that circulating levels of interleukin (IL) 1 and IL-2 predict death and survival, respectively, of HD patients. Studies have assessed IL-1 in treatments with biocompatible and less biocompatible dialysis membranes, but no study has correlated circulating levels of all these immunoreactants. We assessed these immunoreactants, and temperature as an outcome, during HD in patients treated with different membranes. Twelve stable patients, receiving thrice-weekly chronic bicarbonate HD, were randomly dialyzed with three different types of membranes, composed of: Cuprophan, cuprammonium rayon modified cellulose, and Hemophan. Blood was drawn from the arterial line port before (Pre) and 15, 30, and 60 min during and after (Post) HD. Patients\u27 temperatures were measured before and after each treatment. The plasma concentrations of IL-1 and IL-2 and factors C3a and C5a were assessed by ELISA. There were no differences between baseline levels of any of the immunoreactants in patients treated with different dialyzers. C3a, C5a, and IL-1 levels increased significantly during HD treatments with all three different membranes. C3a, C5a, and IL-1 levels during Cuprophan and Hemophan treatments were significantly higher than the levels during modified cellulose treatment at 30 and 60 min and Post (p \u3c 0.01). For all the immunoreactants, however, the Post levels were higher than the Pre levels. In contrast to IL-1, there were no differences in mean IL-2 levels during treatments when different membranes were compared. There were few correlations of plasma C3a and C5a levels with plasma IL-1 levels, but there was only one treatment time in one dialyzer group during which IL-2 and any of the other factors were correlated. Pre and Post temperature values and percent change in temperature were not correlated with any of the immunoreactants measured. These data show that C3a, C5a, and IL-1 responses are similar, but not identical, during treatments with different membranes. The response of circulating IL-2 levels to treatments is quite different from that of plasma C3a, C5a and IL-1 levels and suggests that these changes are not solely due to treatment factors. Treatment with modified cellulose membranes is associated with a different immunoreactive profile as compared with patients dialyzed using other cellulose membranes. We suggest that circulating IL-1 levels are good biocompatibility markers. Copyright © 2001 S. Karger AG, Basel
    corecore