1,966 research outputs found

    Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema

    Get PDF
    We investigated the in vivo effects of a novel aquaporin 4 (AQP4) inhibitor 2-(nicotinamide)-1,3,4-thiadiazole, TGN-020, in a mouse model of focal cerebral ischemia using 7.0-T magnetic resonance imaging (MRI). Pretreatment with TGN-020 significantly reduced brain edema associated with brain ischemia, as reflected by percentage of brain swelling volume (%BSV), 12.1 ± 6.3% in the treated group, compared to (20.8 ± 5.9%) in the control group (p < 0.05), and in the size of cortical infarction as reflected by the percentage of hemispheric lesion volume (%HLV), 20.0 ± 7.6% in the treated group, compared to 30.0 ± 9.1% in the control group (p < 0.05). The study indicated the potential pharmacological use of AQP4 inhibition in reducing brain edema associated with focal ischemia

    Volume Regulated Anion Channel Currents of Rat Hippocampal Neurons and Their Contribution to Oxygen-and-Glucose Deprivation Induced Neuronal Death

    Get PDF
    Volume-regulated anion channels (VRAC) are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM) and NPPB (100 µM), but not to tamoxifen (10 µM). Using oxygen-and-glucose deprivation (OGD) to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD) that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX) and NMDA (40 µM AP-5) receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage

    “It’s Just Art”: Experiences of K-12 Visual Arts Teachers in the Era of Neoliberalism, Assessment, and Accountability

    Get PDF
    The U.S. educational system is largely shaped by neoliberal ideologies and practices that influence the experiences and outcomes of students, teachers, schools, and districts. In this article, we demonstrate how in the current educational climate, certain subjects – and by extension, teachers – may be prioritized over others. Using qualitative data from a survey of K-12 art teachers, we aim to reveal the lived experiences of teaching a subject that is rarely acknowledged in the discourse around standardized testing and accountability. In doing so, we highlight four themes: (1) the perceived devaluing of art education; (2) marginalization and instrumentality in the curriculum; (3) evaluation as a source of frustration; and (4) effects on job satisfaction. Overall, respondents expressed a dissonance between their love for the subject matter and the realities of their day-to-day experiences on the job, both of which have short- and long-term implications for continued inequities in American schools

    Aquaporin-4 and brain edema.

    Get PDF
    Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury

    Effects of Transmitters and Amyloid-Beta Peptide on Calcium Signals in Rat Cortical Astrocytes: Fura-2AM Measurements and Stochastic Model Simulations

    Get PDF
    BACKGROUND: To better understand the complex molecular level interactions seen in the pathogenesis of Alzheimer's disease, the results of the wet-lab and clinical studies can be complemented by mathematical models. Astrocytes are known to become reactive in Alzheimer's disease and their ionic equilibrium can be disturbed by interaction of the released and accumulated transmitters, such as serotonin, and peptides, including amyloid- peptides (A). We have here studied the effects of small amounts of A25-35 fragments on the transmitter-induced calcium signals in astrocytes by Fura-2AM fluorescence measurements and running simulations of the detected calcium signals. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular calcium signals were measured in cultured rat cortical astrocytes following additions of serotonin and glutamate, or either of these transmitters together with A25-35. A25-35 increased the number of astrocytes responding to glutamate and exceedingly increased the magnitude of the serotonin-induced calcium signals. In addition to A25-35-induced effects, the contribution of intracellular calcium stores to calcium signaling was tested. When using higher stimulus frequency, the subsequent calcium peaks after the initial peak were of lower amplitude. This may indicate inadequate filling of the intracellular calcium stores between the stimuli. In order to reproduce the experimental findings, a stochastic computational model was introduced. The model takes into account the major mechanisms known to be involved in calcium signaling in astrocytes. Model simulations confirm the principal experimental findings and show the variability typical for experimental measurements. CONCLUSIONS/SIGNIFICANCE: Nanomolar A25-35 alone does not cause persistent change in the basal level of calcium in astrocytes. However, even small amounts of A25-35, together with transmitters, can have substantial synergistic effects on intracellular calcium signals. Computational modeling further helps in understanding the mechanisms associated with intracellular calcium oscillations. Modeling the mechanisms is important, as astrocytes have an essential role in regulating the neuronal microenvironment of the central nervous system

    Microfluorometric technique for the determination of localized heating in organic particles

    Full text link
    We describe a novel microfluorometric technique, based on the temperature-dependent fluorescence emission from single dye-labeled phospholipid vesicles, for the determination of localized heating effects. An increase in sample temperature results in a red shifting of the probe fluorescence spectrum. As individually calibrated microthermometers, fluorescent liposomes exhibit a temperature sensitivity of ∼0.1°C in the vicinity of the bilayer phase transition temperature. Through modification of the bilayer components, both the sensitivity and operating temperature range of these microthermometers can be controlled. Micron spatial resolution is achieved at a signal-to-noise ratio in excess of 103:1. We use the above technique, for the first time, to determine localized heating effects induced by a laser beam focused to its near-diffraction limited spot size. At the laser wavelength of λ=1.064 μm, a temperature change of 1.1°C/100mW in 10-μm-diam organic liposomes is reported. Implications for the real-time optical monitoring of temperature in biological systems are discussed

    Two Distinct Modes of Hypoosmotic Medium-Induced Release of Excitatory Amino Acids and Taurine in the Rat Brain In Vivo

    Get PDF
    A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo

    (Na+ + K+)-ATPase in C6 glioma and rat cerebrum

    Full text link
    The content and distribution of the membranee-bound enzyme (Na+ + K+)-ATPase in a rat cerebral C6 glioma was determined by immunocytochemistry, immunoblots and enzyme assay. In the C6 glioma cell culture (Na+ + K+)-ATPase activity was about 20% of (Mg2+ + Na+ + K+)-ATPase activity. However, (Mg2+ + Na+ + K+)-ATPase activity in the cerebral C6 gliomas was very close to Mg2+ baseline and not significantly increased by Na+ and K+. As shown by immunobloting, (Na+ + K+)-ATPase catalytic subunit was detected in excised samples of control cerebrum and as a trace in the intracerebral portions of C6 glioma but not at all in the extracranial portions of C6 glioma or in C6 glioma cell culture. (Na+ + K+)-ATPase was not detected immunocytochemically in paraffin sections of the extracranial or intracerebral portions of rat cerebral C6 glioma. The absence of staining for (Na+ + K+)-ATPase clearly demarcated projections of glioma within normal brain. These results suggest that C6 glioma has little if any expression of (Na+ + K+)-ATPase in vitro or in vivo. The small amount of enzyme epitope in the intracerebral portions represents contamination by normal cerebrum in the extracts.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26689/1/0000236.pd
    corecore