410 research outputs found
H-T Phase Diagram of Rare-Earth -- Transition Metal Alloy in the Vicinity of the Compensation Point
Anomalous hysteresis loops of ferrimagnetic amorphous alloys in high magnetic
field and in the vicinity of the compensation temperature have so far been
explained by sample inhomogeneities. We obtain H-T magnetic phase diagram for
ferrimagnetic GdFeCo alloy using a two-sublattice model in the paramagnetic
rare-earth ion approximation and taking into account rare-earth (Gd) magnetic
anisotropy. It is shown that if the magnetic anisotropy of the -sublattice
is larger than that of the -sublattice, the tricritical point can be at
higher temperature than the compensation point. The obtained phase diagram
explains the observed anomalous hysteresis loops as a result of high-field
magnetic phase transition, the order of which changes with temperature. It also
implies that in the vicinity of the magnetic compensation point the shape of
magnetic hysteresis loop is strongly temperature dependent.Comment: 8 pages, 3 figure
Selection Rules for All-Optical Magnetic Recording in Iron Garnet
Finding an electronic transition a subtle excitation of which can launch
dramatic changes of electric, optical or magnetic properties of media is one of
the long-standing dreams in the field of photo-induced phase transitions [1-5].
Therefore the discovery of the magnetization switching only by a femtosecond
laser pulse [6-10] triggered intense discussions about mechanisms responsible
for these laser-induced changes. Here we report the experimentally revealed
selection rules on polarization and wavelengths of ultrafast photo-magnetic
recording in Co-doped garnet film and identify the workspace of the parameters
(magnetic damping, wavelength and polarization of light) allowing this effect.
The all-optical magnetic switching under both single pulse and multiple-pulse
sequences can be achieved at room temperature, in narrow spectral ranges with
light polarized either along or crystallographic axes of the
garnet. The revealed selection rules indicate that the excitations responsible
for the coupling of light to spins are d-electron transitions in octahedral and
tetrahedral Co-sublattices, respectively
High Field Anomalies of Equilibrium and Ultrafast Magnetism in Rare-Earth-Transition Metal Ferrimagnets
Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in
the equilibrium and ultrafast magnetic properties of the ferrimagnetic
rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the
magnetization compensation temperature, each of the magnetizations of the
antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis
loops. Contrary to state-of-the-art theory, which explains such loops by sample
inhomogeneities, here we show that they are an intrinsic property of the
rare-earth ferrimagnets. Assuming that the rare-earth ions are paramagnetic and
have a non-zero orbital momentum in the ground state and, therefore, a large
magnetic anisotropy, we are able to reproduce the experimentally observed
behavior in equilibrium. The same theory is also able to describe the
experimentally observed critical slowdown of the spin dynamics in the vicinity
of the magnetization compensation temperature, emphasizing the role played by
the orbital momentum in static and ultrafast magnetism of ferrimagnets
Direct Observation of Incommensurate–Commensurate Transition in Graphene-hBN Heterostructures via Optical Second Harmonic Generation
Commensurability effects play a crucial role in the formation of electronic properties of novel layered heterostructures. The interest in these moiré superstructures has increased tremendously since the recent observation of a superconducting state (Nature 2018, 556, 43–50) and metal–insulator transition (Nature 2018, 556, 80–84) in twisted bilayer graphene. In this regard, a straightforward and efficient experimental technique for detection of the alignment of layered materials is desired. In this work, we use optical second harmonic generation, which is sensitive to the inversion symmetry breaking, to investigate the alignment of graphene/hexagonal boron nitride heterostructures. To achieve that, we activate a commensurate–incommensurate phase transition by a thermal annealing of the sample. We find that this structural change in the system can be directly observed via a strong modification of a nonlinear optical signal. Unambiguous interpretation of obtained results reveals the potential of a second harmonic generation technique for probing of structural changes in layered systems
Laser-driven quantum magnonics and THz dynamics of the order parameter in antiferromagnets
The impulsive generation of two-magnon modes in antiferromagnets by
femtosecond optical pulses, so-called femto-nanomagnons, leads to coherent
longitudinal oscillations of the antiferromagnetic order parameter that cannot
be described by a thermodynamic Landau-Lifshitz approach. We argue that this
dynamics is triggered as a result of a laser-induced modification of the
exchange interaction. In order to describe the oscillations we have formulated
a quantum mechanical description in terms of magnon pair operators and coherent
states. Such an approach allowed us to} derive an effective macroscopic
equation of motion for the temporal evolution of the antiferromagnetic order
parameter. An implication of the latter is that the photo-induced spin dynamics
represents a macroscopic entanglement of pairs of magnons with femtosecond
period and nanometer wavelength. By performing magneto-optical pump-probe
experiments with 10 femtosecond resolution in the cubic KNiF and the
uniaxial KNiF collinear Heisenberg antiferromagnets, we observed
coherent oscillations at the frequency of 22 THz and 16 THz, respectively. The
detected frequencies as a function of the temperature ideally fit the
two-magnon excitation up to the N\'eel point. The experimental signals are
described as dynamics of magnetic linear dichroism due to longitudinal
oscillations of the antiferromagnetic vector.Comment: 25 pages, 10 figure
Excitation and Detection of THz Coherent Spin Waves in Antiferromagnetic
The efficiency of ultrafast excitation of spins in antiferromagnetic
using nearly single-cycle THz pulse is studied as
a function of the polarization of the THz pulse and the sample temperature.
Above the Morin point the most efficient excitation is achieved when the
magnetic field of the THz pulse is perpendicular to the antiferromagnetically
coupled spins. Using the experimental results and equations of motion for
spins, we show that the mechanism of the spin excitation above and below the
Morin point relies on magnetic-dipole interaction of the THz magnetic field
with spins and the efficiency of the coupling is proportional to the time
derivative of the magnetic field
Magnetic order of Dy3+ and Fe3+ moments in antiferromagnetic DyFeO3 probed by spin Hall magnetoresistance and spin Seebeck effect
We report on spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE)
in single crystal of the rare-earth antiferromagnet DyFeO with a thin Pt
film contact. The angular shape and symmetry of the SMR at elevated
temperatures reflect the antiferromagnetic order of the Fe moments as
governed by the Zeeman energy, the magnetocrystalline anisotropy and the
Dzyaloshinskii-Moriya interaction. We interpret the observed linear dependence
of the signal on the magnetic field strength as evidence for field-induced
order of the Dy moments up to room temperature. At and below the Morin
temperature of 50K, the SMR monitors the spin-reorientation phase
transition of Fe spins. Below 23K, additional features emerge that
persist below 4K, the ordering temperature of the Dy magnetic
sublattice. We conclude that the combination of SMR and SSE is a simple and
efficient tool to study spin reorientation phase transitions and sublattice
magnetizations
Sub-picosecond exchange-relaxation in the compensated ferrimagnet MnRuGa
We study the demagnetization dynamics of the fully compensated half-metallic
ferrimagnet MnRuGa. While the two antiferromagnetically coupled
sublattices are both composed of manganese, they exhibit different temperature
dependencies due to their differing local environments. The sublattice
magnetization dynamics triggered by femtosecond laser pulses are studied to
reveal the roles played by the spin and intersublattice exchange. We find a
two-step demagnetization process, similar to the well-established case of
Gd(FeCo), where the two Mn-sublattices have different demagnetization
rates. The behaviour is analysed using a four-temperature model, assigning
different temperatures to the two manganese spin baths. Even in this strongly
exchange-coupled system, the two spin reservoirs have considerably different
behaviour. The half-metallic nature and strong exchange coupling of
MnRuGa lead to spin angular momentum conservation at much shorter time
scales than found for Gd(FeCo) which suggests that low-power,
sub-picosecond switching of the net moment of MnRuGa is possible.Comment: 5 pages, 3 figures, J. Phys.: Condens. Matter (2021
Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients
Controlling ultrafast magnetization dynamics by a femtosecond laser is
attracting interest both in fundamental science and industry because of the
potential to achieve magnetic domain switching at ever advanced speed. Here we
report experiments illustrating the ultrastrong and fully coherent light-matter
coupling of a high-field single-cycle THz transient to the magnetization vector
in a ferromagnetic thin film. We could visualize magnetization dynamics which
occur on a timescale of the THz laser cycle and two orders of magnitude faster
than the natural precession response of electrons to an external magnetic
field, given by the Larmor frequency. We show that for one particular
scattering geometry the strong coherent optical coupling can be described
within the framework of a renormalized Landau Lifshitz equation. In addition to
fundamentally new insights to ultrafast magnetization dynamics the coherent
interaction allows for retrieving the complex time-frequency magnetic
properties and points out new opportunities in data storage technology towards
significantly higher storage speed.Comment: 25 page
- …