950 research outputs found

    Generating entangled photon pairs from a cavity-QED system

    Full text link
    We propose a scheme for the controlled generation of Einstein-Podosky-Rosen (EPR) entangled photon pairs from an atom coupled to a high Q optical cavity, extending the prototype system as a source for deterministic single photons. A thorough theoretical analysis confirms the promising operating conditions of our scheme as afforded by currently available experimental setups. Our result demonstrates the cavity QED system as an efficient and effective source for entangled photon pairs, and shines new light on its important role in quantum information science.Comment: It has recently come to our attention that the experiment by T. Wilk, S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007), exactly realizes what we proposed in this article, which is published in Phy. Rev. A 040302(R) (2005

    Theory of Photon Blockade by an Optical Cavity with One Trapped Atom

    Get PDF
    In our recent paper [1], we reported observations of photon blockade by one atom strongly coupled to an optical cavity. In support of these measurements, here we provide an expanded discussion of the general phenomenology of photon blockade as well as of the theoretical model and results that were presented in Ref. [1]. We describe the general condition for photon blockade in terms of the transmission coefficients for photon number states. For the atom-cavity system of Ref. [1], we present the model Hamiltonian and examine the relationship of the eigenvalues to the predicted intensity correlation function. We explore the effect of different driving mechanisms on the photon statistics. We also present additional corrections to the model to describe cavity birefringence and ac-Stark shifts. [1] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).Comment: 10 pages, 6 figure

    Broadband teleportation

    Get PDF
    Quantum teleportation of an unknown broadband electromagnetic field is investigated. The continuous-variable teleportation protocol by Braunstein and Kimble [Phys. Rev. Lett. {\bf 80}, 869 (1998)] for teleporting the quantum state of a single mode of the electromagnetic field is generalized for the case of a multimode field with finite bandwith. We discuss criteria for continuous-variable teleportation with various sets of input states and apply them to the teleportation of broadband fields. We first consider as a set of input fields (from which an independent state preparer draws the inputs to be teleported) arbitrary pure Gaussian states with unknown coherent amplitude (squeezed or coherent states). This set of input states, further restricted to an alphabet of coherent states, was used in the experiment by Furusawa {\it et al.} [Science {\bf 282}, 706 (1998)]. It requires unit-gain teleportation for optimizing the teleportation fidelity. In our broadband scheme, the excess noise added through unit-gain teleportation due to the finite degree of the squeezed-state entanglement is just twice the (entanglement) source's squeezing spectrum for its ``quiet quadrature.'' The teleportation of one half of an entangled state (two-mode squeezed vacuum state), i.e., ``entanglement swapping,'' and its verification are optimized under a certain nonunit gain condition. We will also give a broadband description of this continuous-variable entanglement swapping based on the single-mode scheme by van Loock and Braunstein [Phys. Rev. A {\bf 61}, 10302 (2000)]Comment: 27 pages, 7 figures, revised version for publication, Physical Review A (August 2000); major changes, in parts rewritte

    Towards experimental entanglement connection with atomic ensembles in the single excitation regime

    Get PDF
    We present a protocol for performing entanglement connection between pairs of atomic ensembles in the single excitation regime. Two pairs are prepared in an asynchronous fashion and then connected via a Bell measurement. The resulting state of the two remaining ensembles is mapped to photonic modes and a reduced density matrix is then reconstructed. Our observations confirm for the first time the creation of coherence between atomic systems that never interacted, a first step towards entanglement connection, a critical requirement for quantum networking and long distance quantum communications

    Leaky cavities with unwanted noise

    Full text link
    A phenomenological approach is developed that allows one to completely describe the effects of unwanted noise, such as the noise associated with absorption and scattering, in high-Q cavities. This noise is modeled by a block of beam splitters and an additional input-output port. The replacement schemes enable us to formulate appropriate quantum Langevin equations and input-output relations. It is demonstrated that unwanted noise renders it possible to combine a cavity input mode and the intracavity mode in a nonmonochromatic output mode. Possible applications to unbalanced and cascaded homodyning of the intracavity mode are discussed and the advantages of the latter method are shown.Comment: 13 pages, 7 figures; published versio

    Sensitivity limitations in optical speed meter topology of gravitational-wave antennae

    Full text link
    The possible design of QND gravitational-wave detector based on speed meter principle is considered with respect to optical losses. The detailed analysis of speed meter interferometer is performed and the ultimate sensitivity that can be achieved is calculated. It is shown that unlike the position meter signal-recycling can hardly be implemented in speed meter topology to replace the arm cavities as it is done in signal-recycled detectors, such as GEO 600. It is also shown that speed meter can beat the Standard Quantum Limit (SQL) by the factor of 3\sim 3 in relatively wide frequency band, and by the factor of 10\sim 10 in narrow band. For wide band detection speed meter requires quite reasonable amount of circulating power 1\sim 1 MW. The advantage of the considered scheme is that it can be implemented with minimal changes in the current optical layout of LIGO interferometer.Comment: 20 pages, 12 figure

    Conditional large Fock state preparation and field state reconstruction in Cavity QED

    Get PDF
    We propose a scheme for producing large Fock states in Cavity QED via the implementation of a highly selective atom-field interaction. It is based on Raman excitation of a three-level atom by a classical field and a quantized field mode. Selectivity appears when one tunes to resonance a specific transition inside a chosen atom-field subspace, while other transitions remain dispersive, as a consequence of the field dependent electronic energy shifts. We show that this scheme can be also employed for reconstructing, in a new and efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio

    Optimal squeezing, pure states, and amplification of squeezing in resonance fluorescence

    Get PDF
    It is shown that 100% squeezed output can be produced in the resonance fluorescence from a coherently driven two-level atom interacting with a squeezed vacuum. This is only possible for N=1/8N=1/8 squeezed input, and is associated with a pure atomic state, i.e., a completely polarized state. The quadrature for which optimal squeezing occurs depends on the squeezing phase Φ,\Phi , the Rabi frequency Ω,\Omega , and the atomic detuning Δ\Delta . Pure states are described for arbitrary Φ,\Phi , not just Φ=0\Phi =0 or π\pi as in previous work. For small values of N,N, there may be a greater degree of squeezing in the output field than the input - i.e., we have squeezing amplification.Comment: 6 pages & 7 figures, Submitted to Phys. Rev.

    Squeezed Light for the Interferometric Detection of High Frequency Gravitational Waves

    Full text link
    The quantum noise of the light field is a fundamental noise source in interferometric gravitational wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called Standard-Quantum-Limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyze the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO600 detector with present design parameters will benefit from frequency dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO600 will still be dominated by shot-noise and improved by a factor of 10^{6dB/20dB}~2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6x10^{-23} above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency dependent squeezing by introducing an additional optical component to GEO600s signal-recycling cavity.Comment: Presentation at AMALDI Conference 2003 in Pis

    Number-phase-squeezed few-photon state generated from squeezed atoms

    Get PDF
    This paper develops a method of manipulating the squeezed atom state to generate a few-photon state whose phase or photon-number fluctuations are prescribed at our disposal. The squeezed atom state is a collective atomic state whose quantum fluctuations in population difference or collective dipole are smaller than those of the coherent atom state. It is shown that the squeezed atom state can be generated by the interaction of atoms with a coherent state of the electromagnetic field, and that it can be used as a tunable source of squeezed radiation. A variety of squeezed states, including the photon-number squeezed state and the phase squeezed state, can be produced by manipulating the atomic state. This is owing to the fact that quantum-statistical information of the atomic state is faithfully transferred to that of the photon state. Possible experimental situations to implement our theory are discussed.Comment: 17 pages, RevTex, 14 figures, using epsf.sty, title is changed, discussion about dissipation is added, accepted for publication in Physical Review
    corecore