Abstract

This paper develops a method of manipulating the squeezed atom state to generate a few-photon state whose phase or photon-number fluctuations are prescribed at our disposal. The squeezed atom state is a collective atomic state whose quantum fluctuations in population difference or collective dipole are smaller than those of the coherent atom state. It is shown that the squeezed atom state can be generated by the interaction of atoms with a coherent state of the electromagnetic field, and that it can be used as a tunable source of squeezed radiation. A variety of squeezed states, including the photon-number squeezed state and the phase squeezed state, can be produced by manipulating the atomic state. This is owing to the fact that quantum-statistical information of the atomic state is faithfully transferred to that of the photon state. Possible experimental situations to implement our theory are discussed.Comment: 17 pages, RevTex, 14 figures, using epsf.sty, title is changed, discussion about dissipation is added, accepted for publication in Physical Review

    Similar works

    Available Versions

    Last time updated on 02/01/2020