1,866 research outputs found

    Quantum structure and dynamics for atom galleries

    Get PDF
    The bound state structure and dynamics for an atom trap formed from the whispering gallery modes (WGMs) of a dielectric microsphere are investigated. The coupling of the quantized internal and external atomic degrees of freedom plays a fundamental role in the quantum dynamics of this atom gallery. The radiative processes for a cold atom near a microsphere are modified due to the special symmetry of the atom gallery, the WGM mode structure, and the finite extent of the center-of-mass (c.m.) wave packet. Finally, interesting implications of the quantized c.m. for atomic matter waves and cavity QED with a quantum field are mentioned

    Well-dressed states for wave-packet dynamics in cavity QED

    Get PDF
    The quantization of atomic center-of-mass motion is considered within the context of cavity QED with particular emphasis on the dynamics of localized wave packets. “Well-dressed” states are introduced as an eigenbasis that incorporates both the quantized atom-field interaction and the external bound states of a potential well. The interplay of internal and external time scales generates qualitatively new dynamics such as novel “collapses” and “revivals.

    Optical bistability for two-level atoms in a standing-wave cavity

    Get PDF
    Observations of optical bistability are reported for a system composed of multiple atomic beams passing through a high-finesse optical cavity. Both the transmitted power and the intracavity fluorescent intensity have been recorded as functions of incident laser power for zero cavity and atomic detunings. A quantitative study has been made of the evolution of the steady-state switching intensities from well below the critical onset of bistability to well above this point. The results show reasonable agreement with a Gaussian-beam theory of optical bistability, but systematic departures are noted

    Dispersive properties and giant Kerr non-linearities in Dipole Induced Transparency

    Full text link
    We calculate the dispersive properties of the reflected field from a cavity coupled to a single dipole. We show that when a field is resonant with the dipole it experiences a 90 degree phase shift relative to reflection from a bare cavity if the Purcell factor exceeds the bare cavity reflectivity. We then show that optically Stark shifting the dipole with a second field can be used to achieve giant Kerr non-linearites. It is shown that currently achievable cavity lifetimes and cavity quality factors can allow a single emitter in the cavity to impose a nonlinear π\pi phase shift at the single photon level

    Temporal Dynamics of Photon Pairs Generated by an Atomic Ensemble

    Get PDF
    The time dependence of nonclassical correlations is investigated for two fields (1,2) generated by an ensemble of cold Cesium atoms via the protocol of Duan et al. [Nature Vol. 414, p. 413 (2001)]. The correlation function R(t1,t2) for the ratio of cross to auto-correlations for the (1,2) fields at times (t1,t2) is found to have a maximum value Rmax=292(+-)57, which significantly violates the Cauchy-Schwarz inequality R<=1 for classical fields. Decoherence of quantum correlations is observed over 175 ns, and is described by our model, as is a new scheme to mitigate this effect.Comment: 5 pages, 5 figure

    Determination of the number of atoms trapped in an optical cavity

    Get PDF
    The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from Ngreater than or equal to 3 to N=2-->1-->0 atoms, with some trapping events lasting over 1 s

    Cavity QED with atomic mirrors

    Get PDF
    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated "impurity" atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a "strong coupling" regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.Comment: 20 pages, 4 figure

    VPPA weld model evaluation

    Get PDF
    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds

    Cavity QED "By The Numbers"

    Get PDF
    The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from N >= 3 to N = 2 to 1 to 0, with some trapping events lasting over 1 second.Comment: 5 pages, 4 figure
    • …
    corecore