58 research outputs found

    Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies

    Get PDF
    Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical trials include the inability of animal models to recapitulate the human disease, variations in breeding and colony maintenance, lack of standards in design, conduct and analysis of animal trials, and publication bias due to under-reporting of negative results in the scientific literature. The quality of animal model research on novel therapeutics can be improved by bringing the rigor of human clinical trials to animal studies. Research communities in several disease areas have developed recommendations for the conduct and reporting of preclinical studies in order to increase their validity, reproducibility, and predictive value. To address these issues in the AD community, the Alzheimer's Drug Discovery Foundation partnered with Charles River Discovery Services (Morrisville, NC, USA) and Cerebricon Ltd. (Kuopio, Finland) to convene an expert advisory panel of academic, industry, and government scientists to make recommendations on best practices for animal studies testing investigational AD therapies. The panel produced recommendations regarding the measurement, analysis, and reporting of relevant AD targets, th choice of animal model, quality control measures for breeding and colony maintenance, and preclinical animal study design. Major considerations to incorporate into preclinical study design include a priori hypotheses, pharmacokinetics-pharmacodynamics studies prior to proof-of-concept testing, biomarker measurements, sample size determination, and power analysis. The panel also recommended distinguishing between pilot 'exploratory' animal studies and more extensive 'therapeutic' studies to guide interpretation. Finally, the panel proposed infrastructure and resource development, such as the establishment of a public data repository in which both positive animal studies and negative ones could be reported. By promoting best practices, these recommendations can improve the methodological quality and predictive value of AD animal studies and make the translation to human clinical trials more efficient and reliable

    Repeated cocaine exposure facilitates the expression of incentive motivation and induces habitual control in rats.

    Get PDF
    There is growing evidence that mere exposure to drugs can induce long-term alterations in the neural systems that mediate reward processing, motivation, and behavioral control, potentially causing the pathological pursuit of drugs that characterizes the addicted state. The incentive sensitization theory proposes that drug exposure potentiates the influence of reward-paired cues on behavior. It has also been suggested that drug exposure biases action selection towards the automatic execution of habits and away from more deliberate goal-directed control. The current study investigated whether rats given repeated exposure to peripherally administered cocaine would show alterations in incentive motivation (assayed using the Pavlovian-to-instrumental transfer (PIT) paradigm) or habit formation (assayed using sensitivity to reward devaluation). After instrumental and Pavlovian training for food pellet rewards, rats were given 6 daily injections of cocaine (15 mg/kg, IP) or saline, followed by a 10-d period of rest. Consistent with the incentive sensitization theory, cocaine-treated rats showed stronger cue-evoked lever pressing than saline-treated rats during the PIT test. The same rats were then trained on a new instrumental action with a new food pellet reward before undergoing a reward devaluation testing. Although saline-treated rats exhibited sensitivity to reward devaluation, indicative of goal-directed performance, cocaine-treated rats were insensitive to this treatment, suggesting a reliance on habitual processes. These findings, when taken together, indicate that repeated exposure to cocaine can cause broad alterations in behavioral control, spanning both motivational and action selection processes, and could therefore help explain aberrations of decision-making that underlie drug addiction

    Instrumental training.

    No full text
    <p>Instrumental training on the active and inactive lever, shown as average lever presses over days displayed separately for the cocaine group (1A) and the vehicle group (1B). Means +/− SEM. *** = p<0.001.</p

    Cocaine sensitization in experiments 1 and 2.

    No full text
    <p>5A – Locomotor activity on days 1 and 6 for the cocaine and vehicle groups from experiment 2. 5B – Magazine entries during cocaine sensitization for the cocaine and vehicle groups from experiment 2, in which there was no pre-training before sensitization. 5C – Magazine entries during cocaine sensitization for the cocaine and vehicle groups from experiment 1, in which there was pre-training before sensitization. Means +/− SEM. * = p<0.05, ** = p<0.01.</p

    Pavlovian-to-instrumental transfer test results.

    No full text
    <p>PIT test results, calculated as an elevation ratio for both lever presses (3A) and magazine entries (3B) for the cocaine and vehicle groups. The dashed line at 0.5 represents the baseline level of responding. Means +/− SEM. * = p<0.05, ** = p<0.01, *** = p<0.001.</p

    Pavlovian training.

    No full text
    <p>Pavlovian training, shown as magazine entries made in response to the CS and in the 30 s period immediately before it (preCS), displayed separately for CS identity and group. CS+ trials for the cocaine group (2A) and the vehicle group (2C) are shown next to CS− trials for the cocaine group (2B) and vehicle group (2D). Means +/− SEM. ** = p<0.01.</p

    Experimental timeline: Experiment 1.

    No full text
    <p>Experimental timeline: Experiment 1.</p
    • …
    corecore