444 research outputs found

    NASA's Space Launch System: Deep-Space Opportunities for SmallSats

    Get PDF
    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed cubesats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the cubesats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage will fly past the moon at a perigee of approximately 100km, and this closest approach will occur about 5 days after launch. The limiting factor for the latest deployment time is the available power in the sequencer system. Several NASA Mission Directorates were involved in the development of programs for the competition, selection, and development of EM-1 payloads that support directorate priorities. CubeSat payloads on EM-1 will include both NASA research experiments and spacecraft developed by industry, international and potentially academia partners. The Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Division was allocated five payload opportunities on the EM-1 mission. Near Earth Asteroid (NEA) Scout is designed to rendezvous with and characterize a candidate NEA. A solar sail, an innovation the spacecraft will demonstrated for the CubeSat class, will provide propulsion. Lunar Flashlight will use a green propellant system and will search for potential ice deposits in the moon's permanently shadowed craters. BioSentinel is a yeast radiation biosensor, planned to measure the effects of space radiation on deoxyribonucleic acid (DNA). Lunar Icecube, a collaboration with Morehead State University, will prospect for water in ice, liquid, and vapor forms as well as other lunar volatiles from a low-perigee, highly inclined lunar orbit using a compact Infrared spectrometer. Skyfire, a partnership with Lockheed Martin, is a technology demonstration mission that will perform a lunar flyby, collecting spectroscopy, and thermography data to address questions related to surface characterization, remote sensing, and site selection. NASA's Space Technology Mission Directorate (STMD) was allocated three payload opportunities on the EM-1 mission. These slots will be filled via the 2 Centennial Challenges Program, NASA's flagship program for technology prize competitions, which directly engages the public, academia, and industry in open prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (~10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth-Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware for distributed cooperative exploration system. Small landers will enable multi-point exploration, which is complimentary with large-scale human exploration. Once on the lunar surface, the OMOTENASHI spacecraft will observe the radiation and soil environments of the lunar surface by active radiation measurements and soil shear measurements. Following EM-1, Space Launch System will evolve to the more-powerful Block 1B configuration, which uses a new Exploration Upper Stage to increase the vehicle's LEO payload capability from 70 t to 105 t. With that transition, the Orion Stage Adapter, which will carry the secondary payloads on EM-1, will be phased out, and a new Universal Stage Adapter will be introduced, creating opportunities for flying larger secondary payloads. This paper will provide a brief status of SLS progress toward first launch; an overview of smallsat accommodations, integration, and operations on EM-1; information about the specific payloads flying on that launch; and a discussion of future accommodations and opportunities for secondary payloads on SLS for Exploration Mission-2 and beyond

    NASA's Space Launch System: Positioning Assets for Tele-Robotic Operations

    Get PDF
    The National Aeronautics and Space Administration (NASA) is designing and developing America's most capable launch vehicle to support high-priority human and scientific exploration beyond Earth's orbit. The Space Launch System (SLS) will initially lift 70 metric tons (t) on its first flights, slated to begin in 2017, and will be evolved after 2021 to a full 130-t capability-larger than the Saturn V Moon rocket. This superior lift and associated volume capacity will support game-changing exploration in regions that were previously unattainable, being too costly and risky to reach. On the International Space Station, astronauts are training for long-duration missions to asteroids and cis-martian regions, but have not had transportation out of Earth's orbit - until now. Simultaneously, productive rovers are sending scientists - and space fans - unprecedented information about the composition and history of Mars, the planet thought to be most like Earth. This combination of experience and information is laying the foundation for future missions, such as those outlined in NASA's "Mars Next Decade" report, that will rely on te1e-robotic operations to take exploration to the next level. Within this paradigm, NASA's Space Launch System stands ready to manifest the unique payloads that will be required for mission success. Ultimately, the ability to position assets - ranging from orbiters, to landers, to communication satellites and surface systems - is a critical step in broadening the reach of technological innovation that will benefit all Earth's people as the Space Age unfolds. This briefing will provide an overview of how the Space Launch System will support delivery of elements for tele-robotic operations at destinations such as the Moon and Mars, which will synchronize the human-machine interface to deliver hybrid on-orbit capabilities. Ultimately, telerobotic operations will open entirely new vistas and the doors of discovery. NASA's Space Launch System will be a safe, affordable, and sustainable platform for these purposes and more

    Payload Accommodations in NASA's Space Launch System, Block 1 and Beyond

    Get PDF
    As part of NASA's new deep space exploration system, the Space Launch System (SLS) will provide the United States with guaranteed access to deep space and an unparalleled capability for launching primary and co-manifested payloads beyond Earth's orbit. Planned missions for the new SLS family of vehicles include launching the Orion spacecraft and elements of the new Gateway astronaut-tended outpost to lunar orbit and sending robotic probes deep into the solar system, such as to Jupiter's moon Europa. If mission parameters allow, secondary payloads in 6U, 12U or larger sizes will also have rideshare opportunities, providing CubeSats with access to deep space. The SLS vehicle will evolve into progressively more powerful variants with fairings in several sizes available to meet an array of mission needs. Superior mass, volume and characteristic energy (C3) enable sending larger, heavier payloads to a variety of destinations. Several elements of the Block 1 vehicle for the first mission, Exploration Mission-1 (EM-1) are complete and have been delivered to the Exploration Ground Systems (EGS) Program at Kennedy Space Center (KSC), which has responsibility for integrating and launching the vehicle. Contractors are already at work manufacturing the second Block 1 vehicle and incorporating numerous lessons learned in manufacturing America's first super heavy-lift deep space rocket since the Apollo Program's Saturn V enabled humankind to take a giant leap forward

    NASA's Space Launch System: Secondary Payload Accommodations in Block 1 and Beyond

    Get PDF
    Launching from pad 39B at Kennedy Space Center no earlier than December 2019, NASA's Space Launch System (SLS) will send the Orion crew vehicle to a distant retrograde lunar orbit in order to test and validate the new systems developed for SLS, Orion and Kennedy Space Center's Exploration Ground Systems (EGS). In addition to these primary mission objectives, the first integrated fight of NASA's new deep space exploration system, Exploration Mission-1 (EM-1), offers accommodations for 13 6U CubeSats, which will be deployed in deep space after Orion separates from the SLS Interim Cryogenic Propulsion Stage (ICPS). In 2017, the SLS Program, managed by NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, completed the ICPS and delivered it to the EGS Program, which has responsibility for stacking and launch operations. The 13 EM-1 secondary payloads will reside in the Orion Stage Adapter (OSA), which connects the ICPS to Orion's spacecraft adapter. The OSA is essentially complete with preparations being made for transporting the hardware to Kennedy Space Center with accommodations for secondary payload dispensers and with the secondary payload avionics unit installed

    Nasa's Space Launch System: Exceptional Opportunities for Secondary Payloads to Deep Space

    Get PDF
    When NASAs Space Launch System (SLS) launches for the first time from Kennedy Space Center, it will send the Orion crew vehicle farther into space than a human-rated spacecraft has ever traveled. The primary objectives of this first uncrewed mission, Exploration Mission-1 (EM-1), focus on verifying and validating the new technologies and integrated systems developed for SLS, Orion and Exploration Ground Systems (EGS), which together comprise NASAs new deep space exploration system. EM-1 also provides the opportunity for 13 6U CubeSat secondary payloads to be deployed in deep space. As progress is being made toward that first launch, planning is also taking place for secondary payload opportunities on future missions. This paper will provide an overview of the status of the SLS Block 1 launch vehicle and an overview of the 6U payloads selected for EM-1. In addition, an overview of the EM-1 mission trajectories and the bus stops along the trajectory where the payloads will be deployed will be noted. Challenges and new workflows required in identifying and certifying potential payloads will be discussed. The paper will also discuss opportunities that will be presented by future evolutions of SLS

    NASA's Space Launch System: An Enabling Capability for International Exploration

    Get PDF
    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions

    NASA's Space Launch System: A New Capability for Science and Exploration

    Get PDF
    NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration

    NASA's Space Launch System Advanced Booster Development

    Get PDF
    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. These new boosters will enable the flexible path approach to deep space exploration, opening up vast opportunities for human missions to near-Earth asteroids and Mars. This evolved capability will offer large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements

    NASA's Space Launch System: An Enabling Capability for International Exploration

    Get PDF
    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions

    NASA's Space Launch System: A New Capability for Science and Exploration

    Get PDF
    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher characteristic energy (C3), can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration
    corecore