75 research outputs found

    Double-Stranded RNA-Dependent Protein Kinase Regulates the Motility of Breast Cancer Cells

    Get PDF
    Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway

    Cdc42-Dependent Activation of NADPH Oxidase Is Involved in Ethanol-Induced Neuronal Oxidative Stress

    Get PDF
    It has been suggested that excessive reactive oxygen species (ROS) and oxidative stress play an important role in ethanol-induced damage to both the developing and mature central nervous system (CNS). The mechanisms underlying ethanol-induced neuronal ROS, however, remain unclear. In this study, we investigated the role of NADPH oxidase (NOX) in ethanol-induced ROS generation. We demonstrated that ethanol activated NOX and inhibition of NOX reduced ethanol-promoted ROS generation. Ethanol significantly increased the expression of p47phox and p67phox, the essential subunits for NOX activation in cultured neuronal cells and the cerebral cortex of infant mice. Ethanol caused serine phosphorylation and membrane translocation of p47phox and p67phox, which were prerequisites for NOX assembly and activation. Knocking down p47phox with the small interfering RNA was sufficient to attenuate ethanol-induced ROS production and ameliorate ethanol-mediated oxidative damage, which is indicated by a decrease in protein oxidation and lipid peroxidation. Ethanol activated cell division cycle 42 (Cdc42) and overexpression of a dominant negative (DN) Cdc42 abrogate ethanol-induced NOX activation and ROS generation. These results suggest that Cdc42-dependent NOX activation mediates ethanol-induced oxidative damages to neurons

    Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion.</p> <p>Results</p> <p>C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7<sup>ErbB2</sup>) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130<sup>Cas</sup>, as well as interactions among these proteins. C3G abolished ethanol-mediated p130<sup>Cas</sup>/JNK interaction.</p> <p>Conclusions</p> <p>C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.</p

    Dengue Reporter Virus Particles for Measuring Neutralizing Antibodies against Each of the Four Dengue Serotypes

    Get PDF
    The lack of reliable, high-throughput tools for characterizing anti-dengue virus (DENV) antibodies in large numbers of serum samples has been an obstacle in understanding the impact of neutralizing antibodies on disease progression and vaccine efficacy. A reporter system using pseudoinfectious DENV reporter virus particles (RVPs) was previously developed by others to facilitate the genetic manipulation and biological characterization of DENV virions. In the current study, we demonstrate the diagnostic utility of DENV RVPs for measuring neutralizing antibodies in human serum samples against all four DENV serotypes, with attention to the suitability of DENV RVPs for large-scale, long-term studies. DENV RVPs used against human sera yielded serotype-specific responses and reproducible neutralization titers that were in statistical agreement with Plaque Reduction Neutralization Test (PRNT) results. DENV RVPs were also used to measure neutralization titers against the four DENV serotypes in a panel of human sera from a clinical study of dengue patients. The high-throughput capability, stability, rapidity, and reproducibility of assays using DENV RVPs offer advantages for detecting immune responses that can be applied to large-scale clinical studies of DENV infection and vaccination

    High-Precision Radio and Infrared Astrometry of LSPM J1314+1320AB - I : Parallax, Proper Motions, and Limits on Planets

    Get PDF
    Jan Forbrich, et al, 'HIGH-PRECISION RADIO AND INFRARED ASTROMETRY OF LSPM J1314+1320AB. I.PARALLAX, PROPER MOTIONS, AND LIMITS ON PLANETS', The Astrophysical Journal, 827:22 (8pp), August 2016. doi:10.3847/0004-637X/827/1/22. © 2016. The American Astronomical Society. All rights reserved.We present multi-epoch astrometric radio observations with the Very Long Baseline Array (VLBA) of the young ultracool-dwarf binary LSPM J1314+1320AB . The radio emission comes from the secondary star. Combining the VLBA data with Keck near-infrared adaptive-optics observations of both components, a full astrometric fit of parallax (πabs=57.975±0.045\pi_{\rm abs}=57.975\pm0.045 mas, corresponding to a distance of d=17.249±0.013d=17.249\pm0.013 pc), proper motion (μαcosδ=247.99±0.10\mu_{\rm \alpha cos \delta}=-247.99\pm0.10 mas yr1^{-1}, μδ=183.58±0.22\mu_{\delta}=-183.58\pm0.22 mas yr1^{-1}), and orbital motion is obtained. Despite the fact that the two components have nearly identical masses to within ±2\pm2%, the secondary's radio emission exceeds that of the primary by a factor of \gtrsim30, suggesting a difference in stellar rotation history, which could result in different magnetic field configurations. Alternatively, the emission could be anisotropic and beamed toward us for the secondary but not for the primary. Using only reflex motion, we exclude planets of mass 0.7 to 10 MjupM_{\rm jup} with orbital periods of 600 to 10 days, respectively. Additionally, we use the full orbital solution of the binary to derive an upper limit for the semi-major axis of 0.23 AU for stable planetary orbits within this system. These limits cover a parameter space that is inaccessible with, and complementary to, near-infrared radial velocity surveys of ultracool dwarfs. Our absolute astrometry will constitute an important test for the astrometric calibration of Gaia.Peer reviewe

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29
    corecore