16 research outputs found

    Failure of available scoring systems to predict ongoing infection in patients with abdominal sepsis after their initial emergency laparotomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine commonly used scoring systems, designed to predict overall outcome in critically ill patients, for their ability to select patients with an abdominal sepsis that have ongoing infection needing relaparotomy.</p> <p>Methods</p> <p>Data from a RCT comparing two surgical strategies was used. The study population consisted of 221 patients at risk for ongoing abdominal infection. The following scoring systems were evaluated with logistic regression analysis for their ability to select patients requiring a relaparotomy: APACHE-II score, SAPS-II, Mannheim Peritonitis Index (MPI), MODS, SOFA score, and the acute part of the APACHE-II score (APS).</p> <p>Results</p> <p>The proportion of patients requiring a relaparotomy was 32% (71/221). Only 2 scores had a discriminatory ability in identifying patients with ongoing infection needing relaparotomy above chance: the APS on day 1 (AUC 0.61; 95%CI 0.52-0.69) and the SOFA score on day 2 (AUC 0.60; 95%CI 0.52-0.69). However, to correctly identify 90% of all patients needing a relaparotomy would require such a low cut-off value that around 80% of all patients identified by these scoring systems would have negative findings at relaparotomy.</p> <p>Conclusions</p> <p>None of the widely-used scoring systems to predict overall outcome in critically ill patients are of clinical value for the identification of patients with ongoing infection needing relaparotomy. There is a need to develop more specific tools to assist physicians in their daily monitoring and selection of these patients after the initial emergency laparotomy.</p> <p>Trial registration number</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN 51729393">ISRCTN 51729393</a></p

    Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods

    Get PDF
    Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention

    Get PDF
    Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents

    Physical Activity, Sedentary Behavior and Well-Being of Adults with Physical Disabilities and/or Chronic Diseases during the First Wave of the COVID-19 Pandemic: A Rapid Review

    Get PDF
    Background: People with physical disabilities and/or chronic diseases report lower levels of physical activity and well-being than the general population, which potentially is exacerbated through the COVID-19 pandemic. This study explored the international literature on physical activity, sedentary behavior and well-being in adults with physical disabilities and/or chronic diseases during the first wave of the pandemic. Method: In a rapid review, we included studies reporting on physical activity, sedentary behavior and/or well-being in adults with physical disabilities and/or chronic diseases. Four databases (Pubmed, CINAHL, PsycInfo, Embase) were searched for studies published until 30 September 2020. Results: We included twenty-nine studies involving eleven different types of disabilities or health conditions from twenty-one different countries. Twenty-six studies reported on physical activity, of which one reported an increase during the COVID-19 pandemic, four studies reported no difference, and twenty-one studies reported a decrease. Thirteen studies reported a decline in well-being. Only one study measured sedentary behavior, reporting an increase. Conclusion: Despite the variety in methods used, almost all studies reported negative impacts on physical activity and well-being in people with physical disabilities and/or chronic disease during the first wave of the pandemic. These findings highlight the importance of supporting this population, especially in times of crisis.Health and Social Development, Faculty of (Okanagan)Non UBCHealth and Exercise Sciences, School of (Okanagan)ReviewedFacult
    corecore