24 research outputs found

    Varying the expression pattern of the strigolactone receptor gene DAD2 results in phenotypes distinct from both wild type and knockout mutants

    Get PDF
    The action of the petunia strigolactone (SL) hormone receptor DAD2 is dependent not only on its interaction with the PhMAX2A and PhD53A proteins, but also on its expression patterns within the plant. Previously, in a yeast-2-hybrid system, we showed that a series of a single and double amino acid mutants of DAD2 had altered interactions with these binding partners. In this study, we tested the mutants in two plant systems, Arabidopsis and petunia. Testing in Arabidopsis was enabled by creating a CRISPR-Cas9 knockout mutant of the Arabidopsis strigolactone receptor (AtD14). We produced SL receptor activity in both systems using wild type and mutant genes; however, the mutants had functions largely indistinguishable from those of the wild type. The expression of the wild type DAD2 from the CaMV 35S promoter in dad2 petunia produced plants neither quite like the dad2 mutant nor the V26 wild type. These plants had greater height and leaf size although branch number and the plant shape remained more like those of the mutant. These traits may be valuable in the context of a restricted area growing system such as controlled environment agriculture

    Global gene expression analysis of apple fruit development from the floral bud to ripe fruit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple.</p> <p>Results</p> <p>Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes.</p> <p>Conclusion</p> <p>Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.</p

    A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants

    Get PDF
    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models

    Strigolactone and karrikin signal perception: receptors, enzymes, or both?

    No full text
    The signaling molecules strigolactone (SL) and karrikin are involved in seed germination, development of axillary meristems, senescence of leaves and interactions with arbuscular mycorrhizal fungi. The signal transduction pathways for both SLs and karrikins require the same F-box protein (MAX2) and closely related α/β hydrolase fold proteins (DAD2 and KAI2). The crystal structure of DAD2 has been solved revealing an α/β hydrolase fold protein with an internal cavity capable of accommodating SLs. DAD2 responds to the SL analog GR24 by changing conformation and binding to MAX2 in a GR24 concentration-dependent manner. DAD2 can also catalyse hydrolysis of GR24. Structure activity relationships of analogs indicate that the butenolide ring common to both SLs and karrikins is essential for biological activity, but the remainder of the molecules can be significantly modified without loss of activity. The combination of data from the study of DAD2, KAI2 and chemical analogs of SLs and karrikins suggests a model for binding that requires nucleophilic attack by the active site serine of the hydrolase at the carbonyl atom of the butenolide ring. A conformational change occurs in the hydrolase that results in interaction with the F-box protein MAX2. Downstream signal transduction is then likely to occur via SCF complex-mediated ubiquitination of target proteins and their subsequent degradation. The role of the catalytic activity of the hydrolase is unclear but it may be integral in binding as well as possibly allowing the signal to be cleared from the receptor. The α/β hydrolase fold family consists mostly of active enzymes, with a few notable exceptions. We suggest that the DAD2 and KAI2 represent an intermediate where some catalytic activity is retained at the same time as a receptor role has evolved

    A quantitative study of lateral branching in petunia

    No full text

    Analysis of the DECREASED APICAL DOMINANCE Genes of Petunia in the Control of Axillary Branching

    No full text
    Control of branch development is a major determinant of architecture in plants. Branching in petunia (Petunia hybrida) is controlled by the DECREASED APICAL DOMINANCE (DAD) genes. Gene functions were investigated by plant grafting, morphology studies, double-mutant characterization, and gene expression analysis. Both dad1-1 and dad3 increased branching mutants can be reverted to a near-wild-type phenotype by grafting to a wild-type or a dad2 mutant root stock, indicating that both genes affect the production of a graft-transmissible substance that controls branching. Expression of the DAD1 gene in the stems of grafted plants, detected by quantitative reverse transcription-polymerase chain reaction correlates with the branching phenotype of the plants. The dad2-1 mutant cannot be reverted by grafting, indicating that this gene acts predominantly in the shoot of the plant. Double-mutant analysis indicates that the DAD2 gene acts in the same pathway as the DAD1 and DAD3 genes because the dad1-1dad2-1 and dad2-1dad3 double mutants are indistinguishable from the dad2-1 mutant. However, the dad1-1dad3 double mutant has an additive phenotype, with decreased height of the plants, delayed flowering, and reduced germination rates compared to the single mutants. This result, together with the observation that the dad1-1 and dad3 mutants cannot be reverted by grafting to each other, suggests that the DAD1 and DAD3 genes act in the same pathway, but not in a simple stepwise fashion

    BIG: a calossin-like protein required for polar auxin transport in Arabidopsis

    No full text
    Polar auxin transport is crucial for the regulation of auxin action and required for some light-regulated responses during plant development. We have found that two mutants of Arabidopsis—doc1, which displays altered expression of light-regulated genes, and tir3, known for its reduced auxin transport—have similar defects and define mutations in a single gene that we have renamed BIG. BIG is very similar to the Drosophila gene Calossin/Pushover, a member of a gene family also present in Caenorhabditis elegans and human genomes. The protein encoded by BIG is extraordinary in size, 560 kD, and contains several putative Zn-finger domains. Expression-profiling experiments indicate that altered expression of multiple light-regulated genes in doc1 mutants can be suppressed by elevated levels of auxin caused by overexpression of an auxin biosynthetic gene, suggesting that normal auxin distribution is required to maintain low-level expression of these genes in the dark. Double mutants of tir3 with the auxin mutants pin1, pid, and axr1 display severe defects in auxin-dependent growth of the inflorescence. Chemical inhibitors of auxin transport change the intracellular localization of the auxin efflux carrier PIN1 in doc1/tir3 mutants, supporting the idea that BIG is required for normal auxin efflux
    corecore