5 research outputs found

    Cephalopod-omics: emerging fields and technologies in cephalopod biology

    Get PDF
    14 pages, 1 figure.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution LicenseFew animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving fieldPeer reviewe

    Morphological and molecular identification of the dioecious "African species Volvox rousseletii (Chlorophyceae) in the water column of a Japanese lake based on field-collected and cultured materials.

    No full text
    Volvox rousseletii is a dioecious species belonging to Volvox sect. Volvox that has previously only been found in Africa. During field surveys in a large dam lake (Lake Sagami) in Kanagawa Prefecture, central Japan, we encountered a Volvox sect. Volvox species that produces dioecious sexual spheroids in the water column. Although sexual induction of this species in culture did not produce adequately well-developed sexual spheroids for species identification, molecular data directly obtained from field-collected sexual spheroids verified the identity of field-collected male and female sexual spheroids as well as cultured materials. Based on molecular and morphological data, the species was identified as V. rousseletii. This is the first record of a dioecious species of Volvox sect. Volvox in Japan
    corecore