2,068 research outputs found

    Local Casimir Energies for a Thin Spherical Shell

    Full text link
    The local Casimir energy density for a massless scalar field associated with step-function potentials in a 3+1 dimensional spherical geometry is considered. The potential is chosen to be zero except in a shell of thickness δ\delta, where it has height hh, with the constraint hδ=1h\delta=1. In the limit of zero thickness, an ideal δ\delta-function shell is recovered. The behavior of the energy density as the surface of the shell is approached is studied in both the strong and weak coupling regimes. The former case corresponds to the well-known Dirichlet shell limit. New results, which shed light on the nature of surface divergences and on the energy contained within the shell, are obtained in the weak coupling limit, and for a shell of finite thickness. In the case of zero thickness, the energy has a contribution not only from the local energy density, but from an energy term residing entirely on the surface. It is shown that the latter coincides with the integrated local energy density within the shell. We also study the dependence of local and global quantities on the conformal parameter. In particular new insight is provided on the reason for the divergence in the global Casimir energy in third order in the coupling.Comment: 16 pages, revtex 4, no figures. Major additions, clarifications, and corections, references adde

    Relaxation of atomic polarization in paraffin-coated cesium vapor cells

    Get PDF
    The relaxation of atomic polarization in buffer-gas-free, paraffin-coated cesium vapor cells is studied using a variation on Franzen's technique of ``relaxation in the dark'' [Franzen, Phys. Rev. {\bf 115}, 850 (1959)]. In the present experiment, narrow-band, circularly polarized pump light, resonant with the Cs D2 transition, orients atoms along a longitudinal magnetic field, and time-dependent optical rotation of linearly polarized probe light is measured to determine the relaxation rates of the atomic orientation of a particular hyperfine level. The change in relaxation rates during light-induced atomic desorption (LIAD) is studied. No significant change in the spin relaxation rate during LIAD is found beyond that expected from the faster rate of spin-exchange collisions due to the increase in Cs density.Comment: 14 pages, 14 figure

    Optical implementation of the wavelet transform by using a bacteriorhodopsin film as an optically addressed spatial light modulator

    Get PDF
    An optical system utilizing the photoinduced dichroism in a bacteriorhodopsin film has been demonstrated for the optical implementation of wavelet transforms. The dichroism, induced by the image of a wavelet filter on a bacteriorhodopsin film leads to polarization rotation of the Fourier components of an image. The polarization-rotated Fourier components of an input scene are analyzed with a polarizer to give the wavelet transform components. The dichroism is induced with beams whose profiles are determined by wavelet filters in order to perform the optical wavelet transform

    STUDIES ON CARTILAGE

    Full text link

    Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    Full text link
    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of 85^{85}Rb and 87^{87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers

    Legal Issues about Metadata: Data Privacy vs Information Security

    Get PDF
    International audienceFor the purposes of our work we use the concept of metadata to implement enterprise digital right management mechanisms in an intelligent document environment. Such metadata allow us to firstly define contextual security rules and secondly to ensure the information traceability. However, its use may have legal implications, especially with regard to metadata that can be stored (see personal data, privacy), how it should be stored (see probative value in case of litigation, digital forensics) or computer processing in which it may be involved. Another topical issue is the storage and the processing of data using a service provider: the cloud. We must ensure, however, that this solution does not lead to a loss of information controllability for the company. This article aims to position our work with respect to these legal issues

    Selective addressing of high-rank atomic polarization moments

    Get PDF
    We describe a method of selective generation and study of polarization moments of up to the highest rank κ=2F\kappa=2F possible for a quantum state with total angular momentum FF. The technique is based on nonlinear magneto-optical rotation with frequency-modulated light. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We apply the method to study polarization moments of 87^{87}Rb atoms contained in a vapor cell with antirelaxation coating. Distinct ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles, appear in the magnetic-field dependence of the optical rotation. The use of the highest-multipole resonances has important applications in quantum and nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure
    corecore