723 research outputs found
Interannual variability in North American grassland biomass/productivity detected by SeaWinds scatterometer backscatter
We analyzed 2000–2004 growing-season SeaWinds Ku-band microwave backscatter and MODIS leaf area index (LAI) data over North America. Large anomalies in mid-growing-season mean backscatter and LAI, relative to 5-year mean values, occurred primarily in the western Great Plains; backscatter and LAI anomalies had similar spatial patterns across this region. Backscatter and LAI time series data for three ∼103 km2 regions in the western Great Plains were strongly correlated (r2 ∼ 0.6–0.8), and variability in mid-growing season values was well-correlated with annual precipitation (October through September). The results indicate that SeaWinds backscatter is sensitive to interannual variability in grassland biomass/productivity, and can provide an assessment that is completely independent of optical/near-infrared remote sensing instruments
Active Gas-Gap Heat Switch with Fast Thermal Response
An active gas-gap heat switch may significantly reduce the time required to transition between the open and closed states, reduce the heat require to warm the getter, and reduce the heat that leaks from the getter to the switch body. A thermal interface at one end of the active gas-gap heat switch may include a plurality of fins. A getter assembly may be hermetically attached to the thermal interface and a containment tube may surround and house the plurality of fins
Heat Switches Providing Low-Activation Power and Quick-Switching Time for Use in Adiabatic Demagnetization Refrigerators
An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here
Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation
The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions
Heat Switches Providing Low-Activation Power and Quick-Switching Time for Use in Cryogenic Multi-Stage Refrigerators
An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here
Performance of the Three-Stage ADR that Provides Cooling of the Soft X-Ray Spectrometer Aboard Astro-H
The requirements levied upon the cooling system for the soft X-ray spectrometer (SXS) aboard the Astro-H satellite are demanding: Provide an operating temperature of 0.050 degrees Kelvin for a minimum of 24 hours, recycle in less than 2 hours (less than 1 hour in some cases), produce a dipole moment of less than 10 amperes per square meter at the detector location, and do all this with a mass less than 15 kilograms. This is further complicated by the availability of both a 1.3 degrees Kelvin helium bath and a 4.5 degrees Kelvin JT (Joule-Thomson) cooler to recycle the refrigerator. Here we detail the performance of the adiabatic demagnetization refrigerator (ADR) built specifically for SXS that is capable of meeting, and often significantly exceeding, the requirements placed upon it
- …