2,004 research outputs found

    Hardware and software status of QCDOC

    Full text link
    QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation.Comment: Lattice2003(machine), 6 pages, 5 figure

    Status of and performance estimates for QCDOC

    Get PDF
    QCDOC is a supercomputer designed for high scalability at a low cost per node. We discuss the status of the project and provide performance estimates for large machines obtained from cycle accurate simulation of the QCDOC ASIC.Comment: 3 pages 1 figure. Lattice2002(machines

    BKB_K using HYP-smeared staggered fermions in Nf=2+1N_f=2+1 unquenched QCD

    Full text link
    We present results for kaon mixing parameter BKB_K calculated using HYP-smeared improved staggered fermions on the MILC asqtad lattices. We use three lattice spacings (a0.12a\approx 0.12, 0.090.09 and 0.06  0.06\;fm), ten different valence quark masses (mms/10msm\approx m_s/10-m_s), and several light sea-quark masses in order to control the continuum and chiral extrapolations. We derive the next-to-leading order staggered chiral perturbation theory (SChPT) results necessary to fit our data, and use these results to do extrapolations based both on SU(2) and SU(3) SChPT. The SU(2) fitting is particularly straightforward because parameters related to taste-breaking and matching errors appear only at next-to-next-to-leading order. We match to the continuum renormalization scheme (NDR) using one-loop perturbation theory. Our final result is from the SU(2) analysis, with the SU(3) result providing a (less accurate) cross check. We find BK(NDR,μ=2GeV)=0.529±0.009±0.032B_K(\text{NDR}, \mu = 2 \text{GeV}) = 0.529 \pm 0.009 \pm 0.032 and B^K=BK(RGI)=0.724±0.012±0.043\hat{B}_K =B_K(\text{RGI})= 0.724 \pm 0.012 \pm 0.043, where the first error is statistical and the second systematic. The error is dominated by the truncation error in the matching factor. Our results are consistent with those obtained using valence domain-wall fermions on lattices generated with asqtad or domain-wall sea quarks.Comment: 37 pages, 31 figures, most updated versio

    The Luminosity Function of X-ray Selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift

    Full text link
    We present a measure of the hard (2-8 keV) X-ray luminosity function (XLF) of Active Galactic Nuclei up to z~5. At high redshifts, the wide area coverage of the Chandra Multiwavength Project is crucial to detect rare and luminous (Lx > 10^44 erg s^-1) AGN. The inclusion of samples from deeper published surveys, such as the Chandra Deep Fields, allows us to span the lower Lx range of the XLF. Our sample is selected from both the hard (z 6.3x10^-16 erg cm^-2 s^-1) and soft (z > 3; f(0.5-2.0 keV) > 1.0x10^-16 erg cm^-2 s^-1) energy band detections. Within our optical magnitude limits (r',i' < 24), we achieve an adequate level of completeness (>50%) regarding X-ray source identification (i.e., redshift). We find that the luminosity function is similar to that found in previous X-ray surveys up to z~3 with an evolution dependent upon both luminosity and redshift. At z > 3, there is a significant decline in the numbers of AGN with an evolution rate similar to that found by studies of optically-selected QSOs. Based on our XLF, we assess the resolved fraction of the Cosmic X-ray Background, the cumulative mass density of Supermassive Black Holes (SMBHs), and the comparison of the mean accretion rate onto SMBHs and the star formation history of galaxies as a function of redshift. A coevolution scenario up to z~2 is plausible though at higher redshifts the accretion rate onto SMBHs drops more rapidly. Finally, we highlight the need for better statistics of high redshift AGN at z > 3, which is achievable with the upcoming Chandra surveys.Comment: Accepted for publication in ApJ; 25 pages, 18 figure

    Lattice determination of the K(ππ)I=2K \to (\pi\pi)_{I=2} Decay Amplitude A2A_2

    Full text link
    We describe the computation of the amplitude A_2 for a kaon to decay into two pions with isospin I=2. The results presented in the letter Phys.Rev.Lett. 108 (2012) 141601 from an analysis of 63 gluon configurations are updated to 146 configurations giving ReA2=1.381(46)stat(258)syst108A_2=1.381(46)_{\textrm{stat}}(258)_{\textrm{syst}} 10^{-8} GeV and ImA2=6.54(46)stat(120)syst1013A_2=-6.54(46)_{\textrm{stat}}(120)_{\textrm{syst}}10^{-13} GeV. ReA2A_2 is in good agreement with the experimental result, whereas the value of ImA2A_2 was hitherto unknown. We are also working towards a direct computation of the K(ππ)I=0K\to(\pi\pi)_{I=0} amplitude A0A_0 but, within the standard model, our result for ImA2A_2 can be combined with the experimental results for ReA0A_0, ReA2A_2 and ϵ/ϵ\epsilon^\prime/\epsilon to give ImA0/A_0/ReA0=1.61(28)×104A_0= -1.61(28)\times 10^{-4} . Our result for Im\,A2A_2 implies that the electroweak penguin (EWP) contribution to ϵ/ϵ\epsilon^\prime/\epsilon is Re(ϵ/ϵ)EWP=(6.25±0.44stat±1.19syst)×104(\epsilon^\prime/\epsilon)_{\mathrm{EWP}} = -(6.25 \pm 0.44_{\textrm{stat}} \pm 1.19_{\textrm{syst}}) \times 10^{-4}.Comment: 59 pages, 11 figure

    K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant

    Get PDF
    Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe) have been calculated for a range of epochs. With appropriate filter choices, the combined statistical and systematic K correction dispersion of the full sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the calculated K correction allows the Type Ia to be used as a cosmological probe. We use the K corrections with observations of seven SNe at redshifts 0.3 < z <0.5 to bound the possible difference between the locally measured Hubble constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal, P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at http://www-supernova.lbl.gov

    ROSAT Blank Field Sources I: Sample Selection and Archival Data

    Get PDF
    We have identified a population of blank field sources (or `blanks') among the ROSAT bright unidentified X-ray sources with faint optical counterparts. The extreme X-ray over optical flux ratio of blanks is not compatible with the main classes of X-ray emitters except for extreme BL Lacertae objects. From the analysis of ROSAT archival data we found no indication of variability and evidence for only three sources, out of 16, needing absorption in excess of the Galactic value. We also found evidence for an extended nature for only one of the 5 blanks with a serendipitous HRI detection; this source (1WGAJ1226.9+3332) was confirmed as a z=0.89 cluster of galaxies. Palomar images reveal the presence of a red (O-E~2) counterpart in the X-ray error circle for 6 blanks. The identification process brought to the discovery of another high z cluster of galaxies, one (possibly extreme) BL Lac, two ultraluminous X-ray sources in nearby galaxies and two apparently normal type1 AGNs. These AGNs, together with 4 more AGN-like objects seem to form a well defined group: they present unabsorbed X-ray spectra but red Palomar counterparts. We discuss the possible explanations for the discrepancy between the X-ray and optical data, among which: a suppressed big blue bump emission, an extreme dust to gas (~40-60 the Galactic ratio), a high redshift (z>3.5) QSO nature, an atypical dust grain size distribution and a dusty warm absorber. These AGN-like blanks seem to be the bright (and easier to study) analogs of the sources which are found in deep Chandra observations. Three more blanks have a still unknown nature.Comment: 23 pages, 8 figures, accepted by ApJ main journa

    Poly[diacetonitrile­[μ3-difluoro­(oxalato)borato]sodium]

    Get PDF
    The title compound, [Na(C2BF2O4)(CH3CN)2]n, forms infinite two-dimensional layers running parallel to (010). The layers lie across crystallographic mirror planes at y = 1/4 and 3/4. The Na, B and two F atoms reside on these mirror planes. The Na+ cations are six-coordinate. Two equatorial coordination positions are occupied by acetonitrile mol­ecules. The other two equatorial coordination sites are occupied by the chelating O atoms from the difluoro­(oxalato)borate anion (DFOB−). The axial coordination sites are occupied by two F atoms from two different DFOB− anions

    Implications For The Hubble Constant from the First Seven Supernovae at z >= 0.35

    Get PDF
    The Supernova Cosmology Project has discovered over twenty-eight supernovae (SNe) at 0.35 <z < 0.65 in an ongoing program that uses Type Ia SNe as high-redshift distance indicators. Here we present measurements of the ratio between the locally observed and global Hubble constants, H_0^L/H_0^G, based on the first 7 SNe of this high-redshift data set compared with 18 SNe at z <= 0.1 from the Calan/Tololo survey. If Omega_M <= 1, then light-curve-width corrected SN magnitudes yield H_0^L/H_0^G < 1.10 (95% confidence level) in both a Lambda=0 and a flat universe. The analysis using the SNe Ia as standard candles without a light-curve-width correction yields similar results. These results rule out the hypothesis that the discrepant ages of the Universe derived from globular clusters and recent measurements of the Hubble constant are attributable to a locally underdense bubble. Using the Cepheid-distance-calibrated absolute magnitudes for SNe Ia of Sandage (1996}, we can also measure the global Hubble constant, H_0^G. If Omega_M >= 0.2, we find that H_0^G < 70 km/s/Mpc in a Lambda=0 universe and H_0^G < 78 km/s/Mpc in a flat universe, correcting the distant and local SN apparent magnitudes for light curve width. Lower results for H_0^G are obtained if the magnitudes are not width corrected.Comment: 13 pages, 2 Postscript figures. Preprint also available at http://www-supernova.lbl.gov . To appear in ApJ Letter
    corecore