352 research outputs found

    Reverse Doppler Effect of Sound

    Full text link
    We report observation of reverse Doppler effect in a double negative acoustic metamaterial. The metamaterial exhibited negative phase velocity and positive group velocity. The dispersion relation is such that the wavelength corresponding to higher frequency is longer. We observed that the frequency was down-shifted for the approaching source, and up-shifted when the source receded

    Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination

    Get PDF
    Energy & fresh water have both become scarce resources in the modern era of human society. Sorption-based technology is environmentally friendly and energy-efficient and can be driven by low-grade energy to transfer energy and produce fresh water. Here, we report a solid sorbent fabricated by encapsulating a hygroscopic salt, lithium chloride (LiCl), inside micro-sized hollow-structured SiO2. This composite sorbent (LiCl@HS) exhibits 6 times faster water vapor sorption kinetics than pure LiCl and a water vapor sorption capacity of 1.7 kg kg-1 at a relative humidity (RH) of 50%, which is the highest ever reported for any solid sorbent in the literature. The low regeneration temperature (<80 °C) and good cycling stability ensure the feasibility of the composite sorbent for use in practical applications. The thermodynamic calculations reveal that the sorbent is able to continuously supply 20 °C temperature lift with a maximum coefficient of performance (COP) for cooling of 0.97 and COP for heating of 1.89 while simultaneously producing 9.05 kg potable water per kilogram sorbent daily using seawater as the source water and solar energy as the sole energy source. A homemade system is developed and its practical performance in providing seasonally switchable heating and cooling along with clean water production from source water with an impaired quality is successfully verified, indicating its great potential

    Acoustic metamaterial exhibiting four different sign combinations of density and modulus

    Full text link
    We fabricated a double negative acoustic metamaterial which consisted of Helmholtz resonators and membranes. Experimental data on the transmission and dispersion relation are presented. The system exhibits three frequencies where the acoustic state makes sharp transitions from density negative ({\rho} -NG) to double negative (DNG), modulus negative (B-NG), and double positive (DPS) in sequence with the frequency. We observed a wide range of negative refractive index from -0.06 to -3.7 relative to air, which will allow for new acoustic transformation techniques.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    A Novel Low-Temperature Thermal Desalination Technology Using Direct-Contact Spray Method

    Get PDF
    Due to the emerging water crisis, the global desalination capacity has been expanding exponentially in the past few decades, leading to substantial amount of primary energy consumption. Therefore, the exploration of energy-efficient desalination processes and alternative energy sources has been the subject of great research interests. The spray-assisted low-temperature desalination (SLTD) system is a novel method for desalination that enables efficient renewable energy utilization. It works on the direct-contact spray evaporation/condensation mechanism and uses only hollow chambers. The merits include enhanced heat and mass transfer, lower initial and operational costs, and reduced scaling and fouling issues. This chapter presents a study on the SLTD system driven by sensible heat sources. The working principle of the system will be introduced first. Then a thermodynamic analysis will be presented to obtain the freshwater productivity under different design and operational conditions. Additionally, the energy utilization level will be quantified to highlight the energy wastage when operating with sensible heat sources. Afterward, the system configuration will be modified to maximize the utilization of sensible heat sources and promote productivity. Finally economic viability of the modified design will be evaluated

    Probiotic properties and adsorption of Enterococcus faecalis PSCT3-7 to vermiculite

    Get PDF
    The probiotic properties of Enterococcus (E.) faecalis PSCT3-7, a new strain isolated from the intestines of pigs fed dietary fiber containing 50% sawdust, were investigated. E. faecalis PSCT3-7 tolerated a pH range of 3 to 8 and 0.3% bile salts, and it inhibited the growth of Salmonella Typhimurium in a concentration-dependent manner. In addition, E. faecalis showed resistance to several antibacterial agents. Vermiculite, a nutrient and microbial carrier, increased the bile tolerance of the strain. Scanning electron microscope images revealed good adsorption of E. faecalis PSCT3-7 onto vermiculite. E. faecalis PSCT3-7 represents a potential probiotic candidate to administer with vermiculite to swine

    Physicochemical and sensory analyses of high fibre bread incorporated with corncob powder

    Get PDF
    The primary objectives of the present work were to produce corncob powder (CCP) from corncobs and incorporate the CCP into bread formulation in order to develop high fibre bread, and to investigate the physicochemical and sensory properties of the produced high fibre bread (HFB). The corncobs were collected and washed before they underwent the grinding and drying processes. The obtained CCP was incorporated into the bread formulation in three different proportions (5, 10 and 20%) to partially substitute bread flour in the formulation. All three bread samples and the control (0% CCP in the formulation) were analysed to obtain their physicochemical and sensory properties. The incorporation of CCP significantly affected the texture, colour and volume attributes of the produced breads. Increasing the content of CCP in the formulation was found to be responsible for firmer, smaller and darker bread loaves as compared to the composite bread samples. The bread formulation incorporated with 10% CCP had the highest mean scores (7.00) of overall acceptability among all the other formulations, and it was comparable to the commercial breads in the current market

    Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size

    Get PDF
    AbstractThe effects of photosystem II antenna size on reaction center-type energy-dependent quenching (qE) were examined in rice plants grown under two different light intensities using both wild type and qE-less (OsPsbS knockout) mutant plants. Reaction center-type qE was detected by measuring non-photochemical quenching at 50 μmol photons m−2 s−1 white light intensity. We observed that in low light-grown rice plants, reaction center-type qE was higher than in high light-grown plants, and the amount of reaction center-type qE did not depend on zeaxanthin accumulation. This was confirmed in Arabidopsis npq1–2 mutant plants that lack zeaxanthin due to a mutation in the violaxanthin de-epoxidase enzyme. Although the electron transport rate measured at a light intensity of 50 μmol photons m−2 s−1 was the same in high light- and low light-grown wild type and mutant plants lacking PsbS protein, the generation of energy-dependent quenching was completely impaired only in mutant plants. Analyses of the pigment content, Lhcb proteins and D1 protein of PSII showed that the antenna size was larger in low light-grown plants, and this correlated with the amount of reaction center-type qE. Our results mark the first time that the reaction center-type qE has been shown to depend on photosystem II antenna size and, although it depends on the existence of PsbS protein, the extent of reaction center-type qE does not correlate with the transcript levels of PsbS protein. The presence of reaction center-type energy-dependent quenching, in addition to antenna-type quenching, in higher plants for dissipation of excess light energy demonstrates the complexity and flexibility of the photosynthetic apparatus of higher plants to respond to different environmental conditions

    A Spinal Cord Astrocytoma and Its Concurrent Osteoblastic Metastases at the Time of the Initial Diagnosis: a Case Report and Literature Review

    Get PDF
    Bone metastasis from a spinal cord astrocytoma has been reported only twice in the English medical literature. It is generally known that bone metastasis is found after the initial diagnosis with/without intervening surgery rather than being found at the time of the diagnosis of astrocytoma. The purpose of this article is to report for the first time a case of concurrent bone metastasis from a spinal cord astrocytoma at the time of diagnosing the spinal cord astrocytoma

    Thermo-economic analysis and optimization of a vacuum multi-effect membrane distillation system

    Get PDF
    Vacuum multi-effect membrane distillation is an advanced system that possesses the features and merits of vacuum membrane distillation and multi-effect distillation. It has low operating pressure and temperature, high levels of non-volatile rejection and high energy efficiency. This study presents a thermo-economic analysis and optimization of this novel system. A thermodynamic analysis is firstly conducted to evaluate the productivity and the energy consumption under varying design and operational conditions. Special emphases are placed on the impacts of the system configuration, including the number of effects and the overall membrane area, which are rarely covered in the literature. Results reveal that there is a trade-off between the production rate and the energy consumption with respect to most of the operating parameters, e.g. the feed flowrate and the cooling water flowrate. An increase in the number of effects and the membrane area will reduce the energy consumption, but the specific permeate flux for the unit membrane area also becomes lower. To obtain the optimal parameters that minimize the desalination cost, an economic study is then carried out considering a wide range of thermal energy prices. It is observed that a higher feed flowrate, more numbers of effects and larger membrane areas are preferable when the energy price is higher. However, when thermal energy with low prices is available, lower feed flowrates and smaller membrane areas are recommended. The derived results will provide useful information on the vacuum multi-effect membrane distillation system for its future design and operation
    corecore