13,484 research outputs found

    Calcium in the initiation, progression and as an effector of Alzheimer's disease pathology.

    Get PDF
    The cause(s) of sporadic Alzheimer's disease (sAD) are complex and currently poorly understood. They likely result from a combination of genetic, environmental, proteomic and lipidomic factors that crucially occur only in the aged brain. Age-related changes in calcium levels and dynamics have the potential to increase the production and accumulation of both amyloid-beta peptide (Abeta) and tau pathologies in the AD brain, although these two pathologies themselves can induce calcium dyshomeostasis, particularly at synaptic membranes. This review discuses the evidence for a role for calcium dyshomeostasis in the initiation of pathology, as well as the evidence for these pathologies themselves disrupting normal calcium homeostasis, which lead to synaptic and neuronal dysfunction, synaptotoxicity and neuronal loss, underlying the dementia associated with the disease

    The Chemical and Ionization Conditions in Weak Mg II Absorbers

    Get PDF
    We present an analysis of the chemical and ionization conditions in a sample of 100 weak Mg II absorbers identified in the VLT/UVES archive of quasar spectra. Using a host of low ionization lines associated with each absorber in this sample, and on the basis of ionization models, we infer that the metallicity in a significant fraction of weak Mg II clouds is constrained to values of solar or higher, if they are sub-Lyman limit systems. Based on the observed constraints, we present a physical picture in which weak Mg II absorbers are predominantly tracing two different astrophysical processes/structures. A significant population of weak Mg II clouds, those in which N(Fe II) is much less than N(Mg II), identified at both low (z ~ 1) and high (z ~ 2) redshift, are potentially tracing gas in the extended halos of galaxies, analogous to the Galactic high velocity clouds. These absorbers might correspond to alpha-enhanced interstellar gas expelled from star-forming galaxies, in correlated supernova events. On the other hand, N(FeII) approximately equal to N(Mg II) clouds, which are prevalent only at lower redshifts (z < 1.5), must be tracing Type Ia enriched gas in small, high metallicity pockets in dwarf galaxies, tidal debris, or other intergalactic structures.Comment: 35 pages (including tables & figures). Accepted for publication in ApJ. A high resolution version of the paper is available at "http://www.astro.wisc.edu/~anand/weakMgII.pdf

    Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks

    Get PDF
    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS) 5-7.5 micron spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other six of the thirteen stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 microns, which for some is consistent with gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.Comment: 33 pages, 9 figures, to appear in the 20 August, 2014, V791 - 2 issue of the Astrophysical Journa

    GGD 37: An Extreme Protostellar Outflow

    Get PDF
    We present the first Spitzer-IRS spectral maps of the Herbig-Haro flow GGD 37 detected in lines of [Ne III], [O IV], [Ar III], and [Ne v]. The detection of extended [O IV] (55 eV) and some extended emission in [Ne v] (97 eV) indicates a shock temperature in excess of 100,000 K, in agreement with X-ray observations, and a shock speed in excess of 200 km s(-1). The presence of an extended photoionization or collisional ionization region indicates that GGD 37 is a highly unusual protostellar outflow.Jet Propulsion Laboratory, under NASA 1407NASA 1257184Jet Propulsion Laboratory (JPL) 960803University of Rochester 31419-5714Astronom

    Quantization of Superstrings in Ramond-Ramond Backgrounds

    Get PDF
    We present a perturbative study of Ramond-Ramond backgrounds in the NSR formalism. We show how to perform sigma-model computations and discuss in detail the structure of the BRST charge and picture-changing operators. Contact terms play a vital role in the analysis. We also give evidence for a two loop non-renormalization theorem for the background beta functions.Comment: 29 pages, 1 figure; uses LaTeX, epsf, hyperref packages; references adde

    Chandra Observations of the QSO Pair Q2345+007: Binary Quasar or Massive Dark Lens?

    Get PDF
    The components of the wide (7.3") separation quasar pair Q2345+007A,B (z=2.15) have the most strikingly similar optical spectra seen to date (Steidel & Sargent 1991) yet no detected lensing mass, making this system the best candidate known for a massive (1e14 Msun) dark matter lens system. Here we present results from a 65ksec Chandra observation designed to investigate whether it is a binary quasar or a gravitational lens. We find no X-ray evidence for a lensing cluster to a (0.5-2keV) flux limit of 2e-15 cgs, which is consistent with lensing only for a reduced baryon fraction. Using the Chandra X-ray observations of the quasars themselves, together with new and published optical measurements, we use the observed emission properties of the quasars for further tests between the lens and binary hypotheses. Assuming similar line-of-sight absorption to the images, we find that their X-ray continuum slopes are inconsistent (Gamma_A=2.30 and Gamma_B=0.83) as are their X-ray to optical flux ratios. The probability that B suffers absorption sufficient to account for these spectral differences is negligible. We present new optical evidence that the flux ratio of the pair is variable, so the time-delay in a lens scenario could cause some of the discrepancies. However, adequately large variations in overall spectral energy distribution are rare in individual QSOs. All new evidence here weighs strongly toward the binary interpretation. Q2345+007 thus may represent the highest redshift example known of interaction-triggered but as-yet unmerged luminous AGN.Comment: 15 pages, Latex, emulateapj style, including 3 tables and 5 figures. Accepted Feb 1, 2002 for publication in ApJ Main Journal. See also http://hea-www.harvard.edu/~pgreen/Papers.htm

    Structural defects induced by Fe-ion implantation in TiO2

    Full text link
    X-ray photoelectron spectroscopy (XPS) and resonant x-ray emission spectroscopy (RXES) measurements of pellet and thin film forms of TiO2_2 with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO2_2 pellet sample induces heterovalent cation substitution (Fe2+^{2+}\rightarrow Ti4+^{4+}) beneath the surface region. But in thin film samples, the clustering of Fe atoms is primarily detected. In addition to this, significant amounts of secondary phases of Fe3+^{3+} are detected on the surface of all doped samples due to oxygen exposure. These experimental findings are compared with density functional theory (DFT) calculations of formation energies for different configurations of structural defects in the implanted TiO2_2:Fe system. According to our calculations, the clustering of Fe-atoms in TiO2_2:Fe thin films can be attributed to the formation of combined substitutional and interstitial defects. Further, the differences due to Fe doping in pellet and thin film samples can ultimately be attributed to different surface to volume ratios.Comment: 7+ pages, 3 Figure, to appear in J. Appl. Phy

    An E7 Surprise

    Full text link
    We explore some curious implications of Seiberg duality for an SU(2) four-dimensional gauge theory with eight chiral doublets. We argue that two copies of the theory can be deformed by an exactly marginal quartic superpotential so that they acquire an enhanced E7 flavor symmetry. We argue that a single copy of the theory can be used to define an E7-invariant superconformal boundary condition for a theory of 28 five-dimensional free hypermultiplets. Finally, we derive similar statements for three-dimensional gauge theories such as an SU(2) gauge theory with six chiral doublets or Nf=4 SQED.Comment: 27 page
    corecore