321,285 research outputs found
"SAMs meet MEMS": surface modification with self-assembled monolayers for the dry-demolding of photoplastic MEMS/NEMS
In this contribution we demonstrate the use of self-assembled monolayers (SAMs) as anti-adhesion coating to assist the removal of photoplastic MEMS/NEMS with a patterned metal layer from the surface without wet chemical sacrificial layer etching, so-called 'dry-demolding'. The SAMs functionality here is to reduce the stiction between the surface and a thin evaporated metal film. The double-layer SAM/metal provides enough stability to support subsequent micromachining step
Accurate determination of the scattering length of metastable Helium atoms using dark resonances between atoms and exotic molecules
We present a new measurement of the s-wave scattering length a of
spin-polarized helium atoms in the 2^3S_1 metastable state. Using two-photon
photoassociation spectroscopy and dark resonances we measure the energy
E_{v=14}= -91.35 +/- 0.06 MHz of the least bound state v=14 in the interaction
potential of the two atoms. We deduce a value of a = 7.512 +/- 0.005 nm, which
is at least one hundred times more precise than the best previous
determinations and is in disagreement with some of them. This experiment also
demonstrates the possibility to create exotic molecules binding two metastable
atoms with a lifetime of the order of 1 microsecond.Comment: 4 pages, 4 figure
Recommended from our members
Variable domain transformation for linear PAC analysis of mixed-signal systems
This paper describes a method to perform linear AC analysis on mixed-signal systems which appear strongly nonlinear in the voltage domain but are linear in other variable domains. Common circuits like phase/delay-locked loops and duty-cycle correctors fall into this category, since they are designed to be linear with respect to phases, delays, and duty-cycles of the input and output clocks, respectively. The method uses variable domain translators to change the variables to which the AC perturbation is applied and from which the AC response is measured. By utilizing the efficient periodic AC (PAC) analysis available in commercial RF simulators, the circuitâs linear transfer function in the desired variable domain can be characterized without relying on extensive transient simulations. Furthermore, the variable domain translators enable the circuits to be macromodeled as weakly-nonlinear systems in the chosen domain and then converted to voltage-domain models, instead of being modeled as strongly-nonlinear systems directly
20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal
A superconducting transition temperature Tc as high as 100 K was recently
discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery
immediately ignited efforts to identify the mechanism for the dramatically
enhanced Tc from its bulk value of 7 K. Currently, there are two main views on
the origin of the enhanced Tc; in the first view, the enhancement comes from an
interfacial effect while in the other it is from excess electrons with strong
correlation strength. The issue is controversial and there are evidences that
support each view. Finding the origin of the Tc enhancement could be the key to
achieving even higher Tc and to identifying the microscopic mechanism for the
superconductivity in iron-based materials. Here, we report the observation of
20 K superconductivity in the electron doped surface layer of FeSe. The
electronic state of the surface layer possesses all the key spectroscopic
aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer
state is found to have a moderate Tc of 20 K with a smaller gap opening of 4
meV. Our results clearly show that excess electrons with strong correlation
strength alone cannot induce the maximum Tc, which in turn strongly suggests
need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure
Implementation of Particle Flow Algorithm and Muon Identification
We present the implementation of the Particle Flow Algorithm and the result
of the muon identification developed at the University of Iowa. We use Monte
Carlo samples generated for the benchmark LOI process with the Silicon Detector
design at the International Linear Collider. With the muon identification, an
improved jet energy resolution, good muon efficiency and purity are achieved.Comment: 4 pages, 2 figures, lcws08 at Chicag
Weak Localization Effect in Superconductors
We study the effect of weak localization on the transition temperatures of
superconductors using time-reversed scattered state pairs, and find that the
weak localization effect weakens electron-phonon interactions. With solving the
BCS equation, the calculated values for are in good agreement
with experimental data for various two- and three-dimensional disordered
superconductors. We also find that the critical sheet resistance for the
suppression of superconductivity in thin films does not satisfy the universal
behavior but depends on sample, in good agreement with experiments. but depends
on sample, in good agreement with experiments.Comment: 14 pages, Revtex, 5 ps figure
The Backreacted K\"ahler Geometry of Wrapped Branes
For supersymmetric solutions of D3(M2) branes with AdS3(AdS2) factor, it is
known that the internal space is expressible as U(1) fibration over K\"ahler
space which satisfies a specific partial differential equation involving the
Ricci tensor. In this paper we study the wrapped brane solutions of D3 and
M2-branes which were originally constructed using gauged supergravity and
uplifted to D=10 and D=11. We rewrite the solutions in canonical form, identify
the backreacted K\"ahler geometry, and present a class of solutions which
satisfy the Killing spinor equation.Comment: v2: 13 pages, refs adde
- âŠ