41 research outputs found

    Lactational coumestrol exposure increases ovarian apoptosis in adult rats

    Get PDF
    This study is the first to examine the increased apoptosis in the adult rat ovary after lactational exposure to coumestrol (COU), a potent phytoestrogen. Lactating dams were gavaged at doses of 0.01, 0.1, 1, and 10 mg/kg COU during the lactation period and the reproductive effects of female pups were investigated in young adults. Rats were sacrificed at postnatal days (PND) 81–84. Ovarian weights were reduced significantly at 0.1 and 1.0 mg/kg COU. The reduction in the ovarian weight occurred in parallel with an increase in the apoptosis at PND 135–140. A marked dose-dependent increase in the expressions of active caspase-3 and -7 was observed in ovarian granulosa cells. Immunostaining for active caspase-3 and the TUNEL staining of apoptotic cells were also increased in ovaries exposed to COU in a dose-dependent manner. These results suggest new sights into the effect of lactational exposure to COU on the female reproductive health

    'Gut health': a new objective in medicine?

    Get PDF
    'Gut health' is a term increasingly used in the medical literature and by the food industry. It covers multiple positive aspects of the gastrointestinal (GI) tract, such as the effective digestion and absorption of food, the absence of GI illness, normal and stable intestinal microbiota, effective immune status and a state of well-being. From a scientific point of view, however, it is still extremely unclear exactly what gut health is, how it can be defined and how it can be measured. The GI barrier adjacent to the GI microbiota appears to be the key to understanding the complex mechanisms that maintain gut health. Any impairment of the GI barrier can increase the risk of developing infectious, inflammatory and functional GI diseases, as well as extraintestinal diseases such as immune-mediated and metabolic disorders. Less clear, however, is whether GI discomfort in general can also be related to GI barrier functions. In any case, methods of assessing, improving and maintaining gut health-related GI functions are of major interest in preventive medicine

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders

    Get PDF
    There is a long-standing paradox that N-methyl-D-aspartate receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signaling, leads to the build-up of a neuroprotective ‘shield’, whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington’s disease and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling

    An overview of KSTAR results

    No full text
    Since the first H-mode discharges in 2010, the duration of the H-mode state has been extended and a significantly wider operational window of plasma parameters has been attained. Using a second neutral beam (NB) source and improved tuning of equilibrium configuration with real-time plasma control, a stored energy of Wtot ??? 450 kJ has been achieved with a corresponding energy confinement time of ??E ??? 163 ms. Recent discharges, produced in the fall of 2012, have reached plasma ??N up to 2.9 and surpassed the n = 1 ideal no-wall stability limit computed for H-mode pressure profiles, which is one of the key threshold parameters defining advanced tokamak operation. Typical H-mode discharges were operated with a plasma current of 600 kA at a toroidal magnetic field BT = 2 T. L-H transitions were obtained with 0.8-3.0 MW of NB injection power in both single- and double-null configurations, with H-mode durations up to ???15 s at 600 kA of plasma current. The measured power threshold as a function of line-averaged density showed a roll-over with a minimum value of ???0.8 MW at . Several edge-localized mode (ELM) control techniques during H-mode were examined with successful results including resonant magnetic perturbation, supersonic molecular beam injection (SMBI), vertical jogging and electron cyclotron current drive injection into the pedestal region. We observed various ELM responses, i.e. suppression or mitigation, depending on the relative phase of in-vessel control coil currents. In particular, with the 90?? phase of the n = 1 RMP as the most resonant configuration, a complete suppression of type-I ELMs was demonstrated. In addition, fast vertical jogging of the plasma column was also observed to be effective in ELM pace-making. SMBI-mitigated ELMs, a state of mitigated ELMs, were sustained for a few tens of ELM periods. A simple cellular automata ('sand-pile') model predicted that shallow deposition near the pedestal foot induced small-sized high-frequency ELMs, leading to the mitigation of large ELMs. In addition to the ELM control experiments, various physics topics were explored focusing on ITER-relevant physics issues such as the alteration of toroidal rotation caused by both electron cyclotron resonance heating (ECRH) and externally applied 3D fields, and the observed rotation drop by ECRH in NB-heated plasmas was investigated in terms of either a reversal of the turbulence-driven residual stress due to the transition of ion temperature gradient to trapped electron mode turbulence or neoclassical toroidal viscosity (NTV) torque by the internal kink mode. The suppression of runaway electrons using massive gas injection of deuterium showed that runaway electrons were avoided only below 3 T in KSTAR. Operation in 2013 is expected to routinely exceed the n = 1 ideal MHD no-wall stability boundary in the long-pulse H-mode (10 s) by applying real-time shaping control, enabling n = 1 resistive wall mode active control studies. In addition, intensive works for ELM mitigation, ELM dynamics, toroidal rotation changes by both ECRH and NTV variations, have begun in the present campaign, and will be investigated in more detail with profile measurements of different physical quantities by techniques such as electron cyclotron emission imaging, charge exchange spectroscopy, Thomson scattering and beam emission spectroscopy diagnostics.close9
    corecore