46 research outputs found

    From L-Dopa to Dihydroxyphenylacetaldehyde: A Toxic Biochemical Pathway Plays a Vital Physiological Function in Insects

    Get PDF
    One protein in Aedes aegypti, classified into the aromatic amino acid decarboxylase (AAAD) family based on extremely high sequence homology (∼70%) with dopa decarboxylase (Ddc), was biochemically investigated. Our data revealed that this predicted AAAD protein use L-dopa as a substrate, as does Ddc, but it catalyzes the production of 3,4-dihydroxylphenylacetaldehyde (DHPAA) directly from L-dopa and apparently has nothing to do with the production of any aromatic amine. The protein is therefore named DHPAA synthase. This subsequently led to the identification of the same enzyme in Drosophila melanogaster, Anopheles gambiae and Culex quinquefasciatus by an initial prediction of putative DHPAA synthase based on sequence homology and subsequent verification of DHPAA synthase identity through protein expression and activity assays. DHPAA is highly toxic because its aldehyde group readily reacts with the primary amino groups of proteins, leading to protein crosslinking and inactivation. It has previously been demonstrated by several research groups that Drosophila DHPAA synthase was expressed in tissues that produce cuticle materials and apparent defects in regions of colorless, flexible cuticular structures have been observed in its gene mutants. The presence of free amino groups in proteins, the high reactivity of DHPAA with the free amino groups, and the genetically ascertained function of the Drosophila DHPAA synthase in the formation of colorless, flexible cuticle, when taken together, suggest that mosquito and Drosophila DHPAA synthases are involved in the formation of flexible cuticle through their reactive DHPAA-mediated protein crosslinking reactions. Our data illustrate how a seemingly highly toxic pathway can serve for an important physiological function in insects

    Reclaiming the child left behind: the case for corporate cultural responsibility

    Get PDF
    Although a reasonable understanding of corporate social responsibility (CSR) exists, one dimension remains largely ignored. That is, the cultural impacts of corporations, or the bearing, at various levels of their business models, activities, and outcomes on the value systems and enduring beliefs of affected people. We introduce the notion of corporate cultural responsibility (CCR). The way corporations address CCR concerns can be reflected according to three stances: cultural destructiveness, cultural carelessness, and cultural prowess. Taken sequentially, they reflect a growing comprehension and increasingly active consideration of CCR concerns by corporations. In turn, we explicitly address issues related to the complex question of determining the cultural responsibilities of corporate actors; specify key CCR-related conceptualizations; and lay a foundation for discussions, debates, and research efforts centered on CCR concerns and rationales

    Identification and Characterization of a Tyramine–Glutamate Ligase (MfnD) Involved in Methanofuran Biosynthesis

    No full text
    Methanofuran is the first in a series of coenzymes involved in the reduction of carbon dioxide to methane. All methanofuran structural variants contain a basic core structure of 4-[<i>N</i>-(γ-l-glutamyl-γ-l-glutamyl)-<i>p</i>-(β-aminoethyl)­phenoxymethyl]-2-(aminomethyl)­furan (APMF-(Glu)<sub>2</sub>) with different attached side chains depending on the source organism. Recently, we discovered the biosynthetic route for the production of 5-(aminomethyl)-3-furanmethanol-phosphate (F1-P), a precursor to the furan moiety of methanofuran. However, how the γ-linked glutamates are incorporated into methanofuran’s structure remains unknown. Here, we report the identification of an ATP-grasp enzyme encoded by the gene Mefer_1180 in Methanocaldococcus fervens (the homologue of MJ0815 in Methanocaldococcus jannaschii, annotated as MfnD) that catalyzes the ATP-dependent addition of one glutamate to tyramine via a γ-linked amide bond. The occurrence of this reaction is consistent with the presence of γ-glutamyltyramine in cell extracts of M. jannaschii. Our steady-state kinetic analysis of the recombinant enzyme showed that MfnD exhibits a catalytic ability comparable to other ATP-grasp enzymes such as the Escherichia coli glutathione synthetase (GS), with a similar apparent <i>k</i><sub>cat</sub> and <i>K</i><sub>M</sub>. In addition, its activity is divalent metal-dependent, with the highest activity observed with Mn<sup>2+</sup>. The previously solved crystal structure of MfnD from Archaeoglobus fulgidus exhibits a classical ATP-grasp fold with three structural domains; the ATP-binding and metal-binding motifs are conserved in MfnD as seen in other ATP-grasp enzymes. We used site-directed mutagenesis and kinetic analysis to demonstrate that Arg251 is an important residue for both catalysis and glutamate binding. By comparing the active site of MfnD with GS and by molecular docking substrates to the MfnD active site, we predicted the possible glutamate- and tyramine-binding pocket. This is the first report describing the enzymology of the incorporation of the initial l-glutamate molecule into the methanofuran structure. It also provides the first example of an ATP-grasp enzyme activating the γ-carboxylate of glutamate as substrate

    Promiscuity of Methionine Salvage Pathway Enzymes in \u3ci\u3eMethanocaldococcus jannaschii\u3c/i\u3e

    No full text
    A weakness of the life sciences is our inability to predict enzymatic function of genes. Our work aims to establish gene function by discovering new biosynthetic pathways and enzyme functions within the pathway. Using the well-studied oxygen dependent methionine salvage pathway as a guide, we searched for new pathways in methanogens. Here we established the first three predicted methanogenic enzymes have the same function as in the aerobic pathway but with promiscuous activities, implying additional roles. However, how methanogens are able to circumvent the use of oxygen has yet to be discovered, but will likely lead to new biochemistry

    Nonchromatographic âStir and Filter Approachâ (SAFA) for Isolating Sc\u3csub\u3e3\u3c/sub\u3eN@C\u3csub\u3e80\u3c/sub\u3e Metallofullerenes

    No full text
    Separation difficulties have led to a paucity of purified metallic nitride fullerenes (MNFs). Fundamental research and application development has been hampered with limited sample availability. Separation techniques designed to remove contaminant empty-cage fullerenes (e.g., C60, C70...C2n) and classical metallofullerenes (e.g., non-MNFs) traditionally require expensive and tedious chromatographic methods. Our motivation is an alternative purification approach to minimize dependence on HPLC. Herein we report the use of cyclopentadienyl (CPD) and amino functionalized silica to selectively bind contaminant fullerenes. This “Stir and Filter Approach” (SAFA) provides purified MNF samples at ambient and reflux conditions. Under reflux conditions, purified MNFs (80% recovery, 41 h) are obtained using CPD silica. However, at room temperature, there is an equilibrium established between fullerenes and CPD silica, and no purified MNF samples are obtained using SAFA. In contrast, purified MNF samples (99+%) are readily obtained at room temperature using amino, diamino, and triamino silica at recoveries of 93% (11 h), 76% (9 h), and 50% (6 h), respectively

    Biosynthesis of the 5‑(Aminomethyl)-3-furanmethanol Moiety of Methanofuran

    No full text
    We have established the biosynthetic pathway and the associated genes for the biosynthesis of the 5-(aminomethyl)-3-furanmethanol (F1) moiety of methanofuran in the methanogenic archaeon <i>Methanocaldococcus jannaschii</i>. The recombinant enzyme, derived from the MJ1099 gene, was shown to readily condense glyceraldehyde 3-phosphate (Ga-3P) and dihydroxyacetone-P (DHAP) to form 4-(hydroxymethyl)-2-furancarboxaldehyde phosphate (4-HFC-P). The recombinant purified pyridoxal 5′-phosphate-dependent aminotransferase, derived from the MJ0684 gene, was found to be specific for catalyzing the transamination reaction between 4-HFC-P and [<sup>15</sup>N]­alanine to produce [<sup>15</sup>N] 5-(aminomethyl)-3-furanmethanol-P (F1-P) and pyruvate. To confirm these results in cell extracts, we developed sensitive analytical methods for the liquid chromatography–ultraviolet–electrospray ionization mass spectrometry analysis of F1 as a 7-nitrobenzofurazan derivative. This method has allowed for the quantitation of trace amounts of F1 and F1-P in cell extracts and the measurement of the incorporation of stable isotopically labeled precursors into F1. After incubation of cell extracts with [1,2,3-<sup>13</sup>C<sub>3</sub>]­pyruvate and DHAP, 4-([<sup>2</sup>H<sub>2</sub>]­hydroxymethyl)-2-furancarboxylic acid phosphate (4-HFCA-P) or 4-([<sup>2</sup>H<sub>2</sub>]­hydroxymethyl)-2-furancarboxaldehyde phosphate (4-HFC-P) was found to be incorporated into F1-P. 4-HFCA-P and 4-HFC-P were confirmed in cell extracts after removal of the phosphate. The low level of incorporation of [1,2,3-<sup>13</sup>C<sub>3</sub>]­pyruvate into F1-P in these experiments is explained by the fact that the labeled pyruvate must first be converted into Ga-3-P through gluconeogenesis before being incorporated into 4-HFC-P. Cell extracts incubated with 4-HFC-P and a mixture of [<sup>15</sup>N]­aspartate, [<sup>15</sup>N]­glutamate, and [<sup>15</sup>N]­alanine produced [<sup>15</sup>N]­F1-P. We also demonstrated that aqueous solutions of methylglyoxal or pyruvate heated with dihydroxyacetone led to the formation of 4-HFC and 4-HFCA, suggesting a possible prebiotic route to this moiety of methanofuran

    Overexpression of AtLOV1 in Switchgrass alters plant architecture, lignin content, and flowering time.

    Get PDF
    BACKGROUND: Switchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop

    Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and <i>Aspergillus fumigatus</i> Growth

    No full text
    <i>Aspergillus fumigatus</i> is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to <i>N</i><sup>5</sup>-l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in <i>A. fumigatus</i>. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 μM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents <i>A. fumigatus</i> growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits <i>A. fumigatus</i> growth by blocking siderophore biosynthesis through SidA inhibiton
    corecore