1,748 research outputs found

    Renormalization Group Analysis of \rho-Meson Properties at Finite Density

    Get PDF
    We calculate the density dependence of the ρ\rho-meson mass and coupling constant(gρNNg_{\rho NN}) for ρ\rho-nucleon-nucleon vertex at one loop using the lagrangian where the ρ\rho-meson is included as a dynamical gauge boson of a hidden local symmetry. From the condition that thermodynamic potential should not depend on the arbitrary energy scale, renormalization scale, one can construct a renormalization group equation for the thermodynamic potential and argue that the various renormalization group coefficients are functions of the density or temperature. We calculate the β\beta-function for ρ\rho-nucleon-nucleon coupling constant (gρNNg_{\rho NN}) and γ\gamma-function for ρ\rho-meson mass (γmρ\gamma_{m_\rho}). We found that the ρ\rho-meson mass and the coupling constant for gρNNg_{\rho NN} drop as density increases in the low energy limit.Comment: 24 pages, 10 figures, revised versio

    Vector Manifestation and Fate of Vector Mesons in Dense Matter

    Full text link
    We describe in-medium properties of hadrons in dense matter near chiral restoration using a Wilsonian matching to QCD of an effective field theory with hidden local symmetry at the chiral cutoff Λ\Lambda. We find that chiral symmetry is restored in vector manifestation \`a la Harada and Yamawaki at a critical matter density ncn_c. We express the critical density in terms of QCD correlators in dense matter at the matching scale. In a manner completely analogous to what happens at the critical NfcN_f^c and at the critical temperature TcT^c, the vector meson mass is found to vanish (in the chiral limit) at chiral restoration. This result provides a support for Brown-Rho scaling predicted a decade ago.Comment: 14 pages, 2 figure

    Specifying and Verifying Meta-Security by Means of Semantic Web Methods

    Get PDF
    In order to achieve a systematic treatment of security protocols, organizations release a number of technical briefings for describing how security incidents have to be managed. These documents can suffer semantic deficiencies, mainly due to ambiguity or different granularity levels of description and analysis. Ontological Engineering (OE) is a powerful instrument that can be applied for both, cleaning methods and knowledge in incident protocols, and specifying (meta)security requirements on protocols for solving security incidents. We also show how the ontology built from security reports can be used as the knowledge core for semantic systems in order to work with resolution incidents in a safe way. The method has been illustrated with a case studyJunta de Andalucía TIC-606

    In-medium pion weak decay constants

    Full text link
    In nuclear matter, the pion weak decay constant is separated into the two components ft,fsf_t, f_s corresponding to the time and space components of the axial-vector current. Using QCD sum rules, we compute the two decay constants from the pseudoscalar-axial vector correlation function in the matter id4x eipx<ρT[dˉ(x)iγ5u(x) uˉ(0)γμγ5d(0)]ρ>i \int d^4x~ e^{ip\cdot x} < \rho| T[{\bar d}(x) i \gamma_5 u (x)~ {\bar u}(0) \gamma_\mu \gamma_5 d (0)] | \rho>. It is found that the sum rule for ftf_t satisfies the in-medium Gell-Mann--Oakes--Renner (GOR) relation precisely while the fsf_s sum rule does not. The fsf_s sum rule contains the non-negligible contribution from the dimension 5 condensate N+18N_N + {1\over 8} _N in addition to the in-medium quark condensate. Using standard set of QCD parameters and ignoring the in-medium change of the pion mass, we obtain ft=105f_t =105 MeV at the nuclear saturation density. The prediction for fsf_s depends on values of the dimension 5 condensate and on the Borel mass. However, the OPE constrains that fs/ft1f_s/f_t \ge 1 , which does not agree with the prediction from the in-medium chiral perturbation theory. Depending on the value of the dimension 5 condensate, fsf_s at the saturation density is found to be in the range 112134 112 \sim 134 MeV at the Borel mass M21M^2 \sim 1 GeV2^2.Comment: 19 pages including two postscript figures, substantially revise

    Magnetic field effects on the density of states of orthorhombic superconductors

    Full text link
    The quasiparticle density of states in a two-dimensional d-wave superconductor depends on the orientation of the in-plane external magnetic field H. This is because. in the region of the gap nodes, the Doppler shift due to the circulating supercurrents around a vortex depend on the direction of H. For a tetragonal system the induced pattern is four-fold symmetric and, at zero energy, the density of states exhibits minima along the node directions. But YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes two-fold symmetric with the position of the minima occuring when H is oriented along the Fermi velocity at a node on the Fermi surface. The effect of impurity scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure

    Simultaneous Softening of sigma and rho Mesons associated with Chiral Restoration

    Full text link
    Complex poles of the unitarized pi-pi scattering amplitude in nuclear matter are studied. Partial restoration of chiral symmetry is modeled by the decrease of in-medium pion decay constant f*_{pi}. For large chiral restoration (f*_{pi}/f_{pi} << 1), 2nd sheet poles in the scalar (sigma) and the vector (rho) mesons are both dictated by the Lambert W function and show universal softening as f*_{pi} decreases. In-medium pi-pi cross section receives substantial contribution from the soft mode and exhibits a large enhancement in low-energy region. Fate of this universality for small chiral restoration (f*_{pi}/f_{pi} ~ 1) is also discussed.Comment: 5 pages, 4-eps figures, version accepted by Phys. Rev. C (R) with minor modification

    Tactile Discrimination Using Template Classifiers: Towards a Model of Feature Extraction in Mammalian Vibrissal Systems

    Get PDF
    Rats and other whiskered mammals are capable of making sophisticated sensory discriminations using tactile signals from their facial whiskers (vibrissae). As part of a programme of work to develop biomimetic technologies for vibrissal sensing, including whiskered robots, we are devising algorithms for the fast extraction of object parameters from whisker deflection data. Previous work has demonstrated that radial distance to contact can be estimated from forces measured at the base of the whisker shaft. We show that in the case of a moving object contacting a whisker, the measured force can be ambiguous in distinguishing a nearby object moving slowly from a more distant object moving rapidly. This ambiguity can be resolved by simultaneously extracting object position and speed from the whisker deflection time series – that is by attending to the dynamics of the whisker’s interaction with the object. We compare a simple classifier with an adaptive EM (Expectation Maximisation) classifier. Both systems are effective at simultaneously extracting the two parameters, the EM-classifier showing similar performance to a handpicked template classifier. We propose that adaptive classification algorithms can provide insights into the types of computations performed in the rat vibrissal system when the animal is faced with a discrimination task

    A Mean Field Theory of the Chiral Phase Transition

    Get PDF
    The recent discussions by Koci\'c and Kogut on the nature of the chiral phase transition are reviewed. The mean-field nature of the transition suggested by these authors is supported in random matrix theory by Verbaarschot and Jackson which reproduces many aspects of QCD lattice simulations. In this paper, we point out physical arguments that favor a mean-field transition, not only for zero density and high temperature, but also for finite density. We show, using the Gross-Neveu model in 3 spatial dimensions in mean-field approximation, how the phase transition is constructed. In order to reproduce the lowering of the ρ=0\rho=0, T=0T=0 vacuum evaluated in lattice calculations, we introduce {nucleons} rather than constituent quarks in negative energy states, down to a momentum cut-off of Λ\Lambda. We also discuss Brown-Rho scaling of the hadron masses in relation to the QCD phase transition, and how this scaling affects the CERES and HELIOS-3 dilepton experiments.Comment: 23 pages, Latex, no figure
    corecore