29,671 research outputs found

    Pulsar Velocity with Three-Neutrino Oscillations in Non-adiabatic Processes

    Full text link
    We have studied the position dependence of neutrino energy on the Kusenko-Segr\`{e} mechanism as an explanation of the proper motion of pulsars. The mechanism is also examined in three-generation mixing of neutrinos and in a non-adiabatic case. The position dependence of neutrino energy requires the higher value of magnetic field such as B∼3×1015B\sim 3\times 10^{15} Gauss in order to explain the observed proper motion of pulsars. It is shown that possible non-adiabatic processes decrease the neutrino momentum asymmetry, whereas an excess of electron neutrino flux over other flavor neutrino fluxes increases the neutrino momentum asymmetry. It is also shown that a general treatment with all three neutrinos does not modify the result of the two generation treatment if the standard neutrino mass hierarchy is assumed.Comment: 8 pages, REVTEX, no figure

    A probe of the Radion-Higgs mixing in the Randall-Sundrum model at e^+ e^- colliders

    Get PDF
    In the Randall-Sundrum model, the radion-Higgs mixing is weakly suppressed by the effective electroweak scale. A novel feature of the existence of gravity-scalar mixing would be a sizable three-point vertex among the KK graviton, Higgs and radion. We study this vertex in the process e^+ e^- -> h phi, which is allowed only with a non-zero radion-Higgs mixing. It is shown that the angular distribution is a unique characteristic of the exchange of massive spin-2 gravitons, and the total cross section at the future e^+ e^- collider is big enough to cover a large portion of the parameter space where the LEP/LEP II data cannot constrain.Comment: 14pages, RevTeX, 5 figure

    Custodial bulk Randall-Sundrum model and B->K* l+ l'-

    Full text link
    The custodial Randall-Sundrum model based on SU(2)_L X SU(2)_R X U(1)_(B-L) generates new flavor-changing-neutral-current (FCNC) phenomena at tree level, mediated by Kaluza-Klein neutral gauge bosons. Based on two natural assumptions of universal 5D Yukawa couplings and no-cancellation in explaining the observed standard model fermion mixing matrices, we determine the bulk Dirac mass parameters. Phenomenological constraints from lepton-flavor-violations are also used to specify the model. From the comprehensive study of B->K* l+ l'-, we found that only the B->K*ee decay has sizable new physics effects. The zero value position of the forward-backward asymmetry in this model is also evaluated, with about 5% deviation from the SM result. Other effective observables are also suggested such as the ratio of two differential (or partially integrated) decay rates of B->K*ee and B->K*mu mu. For the first KK gauge boson mass of M_A^(1)=2-4 TeV, we can have about 10-20% deviation from the SM results.Comment: references added with minor change

    Associated production of a single heavy T-quark in the littlest and simplest little Higgs models

    Get PDF
    The colored SU(2)-singlet heavy T-quark is one of the most crucial ingredients in little Higgs models, which is introduced to cancel the largest contribution of the SM top quark to the Higgs boson mass at one-loop level. In two representative little Higgs models, the littlest Higgs model and the SU(3) simplest Higgs model, we comprehensively study the single heavy T-quark production at Large Hadron Collider (LHC). After presenting the possibility of relatively light (~500 GeV) T-quark in the simplest little Higgs model, we consider all the relevant processes, the 2->2 process of qb->q'T, the 2->3 process of qg->q'Tb, the s-channel process of q bar(q)'->T bar{b}, and the gluon fusion process of gg->T bar{t}. We found that the 2->3 process can be quite important, as its cross section is about 30% of the 2->2 one and it is dominant in high p_T distributions. The s-channel and the gluon fusion processes also show distinctive features in spite of their suppressed cross sections. In the gluon fusion process of the simplest little Higgs model, for example, the pseudo-scalar contribution is rather dominant over the Higgs contribution for relatively light M_T.Comment: 27 pages, using RevTeX; references adde

    Electron Removal Self Energy and its application to Ca2CuO2Cl2

    Full text link
    We propose using the self energy defined for the electron removal Green's function. Starting from the electron removal Green's function, we obtained expressions for the removal self energy Sigma^ER (k,omega) that are applicable for non-quasiparticle photoemission spectral functions from a single band system. Our method does not assume momentum independence and produces the self energy in the full k-omega space. The method is applied to the angle resolved photoemission from Ca_2CuO_2Cl_2 and the result is found to be compatible with the self energy value from the peak width of sharp features. The self energy is found to be only weakly k-dependent. In addition, the Im Sigma shows a maximum at around 1 eV where the high energy kink is located.Comment: 5 pages, 3 figure
    • …
    corecore