15 research outputs found

    MGOS: A library for molecular geometry and its operating system

    Get PDF
    The geometry of atomic arrangement underpins the structural understanding of molecules in many fields. However, no general framework of mathematical/computational theory for the geometry of atomic arrangement exists. Here we present "Molecular Geometry (MG)'' as a theoretical framework accompanied by "MG Operating System (MGOS)'' which consists of callable functions implementing the MG theory. MG allows researchers to model complicated molecular structure problems in terms of elementary yet standard notions of volume, area, etc. and MGOS frees them from the hard and tedious task of developing/implementing geometric algorithms so that they can focus more on their primary research issues. MG facilitates simpler modeling of molecular structure problems; MGOS functions can be conveniently embedded in application programs for the efficient and accurate solution of geometric queries involving atomic arrangements. The use of MGOS in problems involving spherical entities is akin to the use of math libraries in general purpose programming languages in science and engineering. (C) 2019 The Author(s). Published by Elsevier B.V

    The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation

    Get PDF
    Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE-sufficient (wild-type) or RAGE-deficient (RAGE(-/-)) C57BL/6 mice were subjected to TBI through controlled cortical impact and studied for cardiopulmonary injury. Compared to control animals, TBI induced systemic hypoxia, acute lung injury, pulmonary neutrophilia, and decreased compliance (a measure of the lungs' ability to expand), all of which were attenuated in RAGE(-/-) mice. Neutralizing systemic HMGB1 induced by TBI reversed hypoxia and improved lung compliance. Compared to wild-type donors, lungs from RAGE(-/-) TBI donors did not develop acute lung injury after transplantation. In a study of clinical transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic oxygenation of the donor lung before transplantation and predicted impaired oxygenation after transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by which TBI induces lung dysfunction and that targeting this pathway before transplant may improve recipient outcomes after lung transplantation

    Voronoi diagrams, quasi-triangulations, and beta-complexes for disks in R2: the theory and implementation in BetaConcept

    Get PDF
    Voronoi diagrams are powerful for solving spatial problems among particles and have been used in many disciplines of science and engineering. In particular, the Voronoi diagram of three-dimensional spheres, also called the additively-weighted Voronoi diagram, has proven its powerful capabilities for solving the spatial reasoning problems for the arrangement of atoms in both molecular biology and material sciences. In order to solve application problems, the dual structure, called the quasi-triangulation, and its derivative structure, called the beta-complex, are frequently used with the Voronoi diagram itself. However, the Voronoi diagram, the quasi-triangulation, and the beta-complexes are sometimes regarded as somewhat difficult for ordinary users to understand. This paper presents the twodimensional counterparts of their definitions and introduce the BetaConcept program which implements the theory so that users can easily learn the powerful concept and capabilities of these constructs in a plane. The BetaConcept program was implemented in the standard C++ language with MFC and OpenGL and freely available at Voronoi Diagram Research Center (http://voronoi.hanyang.ac.kr)

    Abstract Euclidean Voronoi diagram of 3D balls and its computation via tracing edges

    No full text
    known as an additively weighted Voronoi diagram, in 3D space has not been studied as much as it deserves. In this paper, we present an algorithm to compute the Euclidean Voronoi diagram for 3D spheres with different radii. The presented algorithm follows Voronoi edges one by one until the construction is completed in O(mn) time in the worst-case, where m is the number of edges in the Voronoi diagram and n is the number of spherical balls. As building blocks, we show that Voronoi edges are conics that can be precisely represented as rational quadratic Bézier curves. We also discuss how to conveniently represent and process Voronoi faces which are hyperboloids of two sheets

    Rerouting scheme for handoff in wireless ATM

    No full text

    Euclidean Voronoi diagrams of 3D sphereds and applications to protein structure analysis.

    No full text
    Despite its many important applications in various disciplines in sciences and engineering, the Euclidean Voronoi diagram for spheres in 3D space has not been studied as much as it deserves. In this paper, we present an algorithm to compute a Euclidean Voronoi diagram for 3D spheres and show how the diagram can be used in the analysis of protein structures. Given an initial Voronoi vertex, the presented edge-tracing algorithm follows Voronoi edges until the construction is completed in O(mn) time in the worst-case, where m and n are the numbers of edges and spheres, respectively. Once a Voronoi diagram for 3D atoms of a protein is computed, it is shown that the diagram can be used to efficiently and precisely analyze the spatial structure of the protein. It turns out that this capability of a Voronoi diagram can be crucial to solving several important problems remaining to be solved in structural biologyclose172

    Pocket extraction on proteins via the Voronoi diagram of spheres.

    No full text
    Proteins consist of atoms. Given a protein, the automatic recognition of depressed regions, called pockets, on the surface of proteins is important for protein-ligand docking and facilitates fast development of new drugs. Recently, computational approaches have emerged for recognizing pockets from the geometrical point of view. Presented in this paper is a geometric method for the pocket recognition which is based on the Voronoi diagram for atoms. Given a Voronoi diagram, the proposed algorithm transforms the atomic structure to meshes which contain the information of the proximity among atoms, and then recognizes depressions on the surface of a protein using the meshes. (c) 2007 Elsevier Inc. All rights reservedclose192
    corecore