48 research outputs found
Recommended from our members
Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping.
Identifying material parameters affecting properties of ferromagnets is key to optimized materials that are better suited for spintronics. Magnetic anisotropy is of particular importance in van der Waals magnets, since it not only influences magnetic and spin transport properties, but also is essential to stabilizing magnetic order in the two-dimensional limit. Here, we report that hole doping effectively modulates the magnetic anisotropy of a van der Waals ferromagnet and explore the physical origin of this effect. Fe3-xGeTe2 nanoflakes show a significant suppression of the magnetic anisotropy with hole doping. Electronic structure measurements and calculations reveal that the chemical potential shift associated with hole doping is responsible for the reduced magnetic anisotropy by decreasing the energy gain from the spin-orbit induced band splitting. Our findings provide an understanding of the intricate connection between electronic structures and magnetic properties in two-dimensional magnets and propose a method to engineer magnetic properties through doping
Ferromagnetic quasi-atomic electrons in two-dimensional electride.
An electride, a generalized form of cavity-trapped interstitial anionic electrons (IAEs) in a positively charged lattice framework, shows exotic properties according to the size and geometry of the cavities. Here, we report that the IAEs in layer structured [Gd2C]2+·2e- electride behave as ferromagnetic elements in two-dimensional interlayer space and possess their own magnetic moments of ~0.52 μB per quasi-atomic IAE, which facilitate the exchange interactions between interlayer gadolinium atoms across IAEs, inducing the ferromagnetism in [Gd2C]2+·2e- electride. The substitution of paramagnetic chlorine atoms for IAEs proves the magnetic nature of quasi-atomic IAEs through a transition from ferromagnetic [Gd2C]2+·2e- to antiferromagnetic Gd2CCl caused by attenuating interatomic exchange interactions, consistent with theoretical calculations. These results confirm that quasi-atomic IAEs act as ferromagnetic elements and trigger ferromagnetic spin alignments within the antiferromagnetic [Gd2C]2+ lattice framework. These results present a broad opportunity to tailor intriguing ferromagnetism originating from quasi-atomic interstitial electrons in low-dimensional materials
Recommended from our members
Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and bioelectronic devices
“Living” cell sheets or bioelectronic chips have great potentials to improve the quality of diagnostics and therapies. However, handling these thin and delicate materials remains a grand challenge because the external force applied for gripping and releasing can easily deform or damage the materials. This study presents a soft manipulator that can manipulate and transport cell/tissue sheets and ultrathin wearable biosensing devices seamlessly by recapitulating how a cephalopod’s suction cup works. The soft manipulator consists of an ultrafast thermo-responsive, microchanneled hydrogel layer with tissue-like softness and an electric heater layer. The electric current to the manipulator drives microchannels of the gel to shrink/expand and results in a pressure change through the microchannels. The manipulator can lift/detach an object within 10 s and can be used repeatedly over 50 times. This soft manipulator would be highly useful for safe and reliable assembly and implantation of therapeutic cell/tissue sheets and biosensing devices
Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel
Particle behavior in viscoelastic fluids has attracted considerable attention in recent years. In viscoelastic fluids, as opposed to Newtonian fluids, particle focusing can be simply realized in a microchannel without any external forces or complex structures. In this study, a polydimethylsiloxane (PDMS) microchannel with a rhombic cross-sectional shape was fabricated to experimentally investigate the behavior of inertial and elasto-inertial particles. Particle migration and behavior in Newtonian and non-Newtonian fluids were compared with respect to the flow rate and particle size to investigate their effect on the particle focusing position and focusing width. The PDMS rhombic microchannel was fabricated using basic microelectromechanical systems (MEMS) processes. The experimental results showed that single-line particle focusing was formed along the centerline of the microchannel in the non-Newtonian fluid, unlike the double-line particle focusing in the Newtonian fluid over a wide range of flow rates. Numerical simulation using the same flow conditions as in the experiments revealed that the particles suspended in the channel tend to drift toward the center of the channel owing to the negative net force throughout the cross-sectional area. This supports the experimental observation that the viscoelastic fluid in the rhombic microchannel significantly influences particle migration toward the channel center without any external force owing to coupling between the inertia and elasticity
Elasto-Inertial Particle Focusing in Microchannel with T-Shaped Cross-Section
Recently, particle manipulation in non-Newtonian fluids has attracted increasing attention because of a good particle focusing toward the mid-plane of a channel. In this research, we proposed a simple and robust fabrication method to make a microchannel with various T-shaped cross-sections for particle focusing and separation in a viscoelastic solution. SU-8-based soft lithography was used to form three different types of microchannels with T-shaped cross-sections, which enabled self-alignment and plasma bonding between two PDMS molds. The effects of the flow rate and geometric shape of the cross-sections on particle focusing were evaluated in straight microchannels with T-shaped cross-sections. Moreover, by taking images from the top and side part of the channels, it was possible to confirm the position of the particles three-dimensionally. The effects of the corner angle of the channel and the aspect ratio of the height to width of the T shape on the elasto-inertial focusing phenomenon were evaluated and compared with each other using numerical simulation. Simulation results for the particle focusing agreed well with the experimental results both in qualitatively and quantitatively. Furthermore, the numerical study showed a potential implication for particle separation depending on its size when the aspect ratio of the T-shaped microchannel and the flow rate were appropriately leveraged