8,684 research outputs found

    Improved Abundance Sensitivity of Molecular Ions in Positive-Ion APCI MS Analysis of Petroleum in Toluene

    Get PDF
    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S1, S2, and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure

    Quartet consistency count method for reconstructing phylogenetic trees

    Full text link
    Among the distance based algorithms in phylogenetic tree reconstruction, the neighbor-joining algorithm has been a widely used and effective method. We propose a new algorithm which counts the number of consistent quartets for cherry picking with tie breaking. We show that the success rate of the new algorithm is almost equal to that of neighbor-joining. This gives an explanation of the qualitative nature of neighbor-joining and that of dissimilarity maps from DNA sequence data. Moreover, the new algorithm always reconstructs correct trees from quartet consistent dissimilarity maps.Comment: 11 pages, 5 figure

    Hybrid Gate-Level Leakage Model for Monte Carlo Analysis on Multiple GPUs

    Get PDF
    This paper proposes a hybrid gate-level leakage model for the use with the Monte Carlo (MC) analysis approach, which combines a lookup table (LUT) model with a first-order exponential-polynomial model (first-order model, herein). For the process parameters having strong nonlinear relationships with the logarithm of leakage current, the proposed model uses the LUT approach for the sake of modeling accuracy. For the other process parameters, it uses the first-order model for increased efficiency. During the library characterization for each type of logic gates, the proposed approach determines the process parameters for which it will use the LUT model. And, it determines the number of LUT data points, which can maximize analysis efficiency with acceptable accuracy, based on the user-defined threshold. The proposed model was implemented for gate-level MC leakage analysis using three graphic processing units. In experiments, the proposed approach exhibited the average errors of <5% in both mean and standard deviation with reference to SPICE-level MC leakage analysis. In comparison, MC analysis with the first-order model exhibited more than 90% errors. In CPU times, the proposed hybrid approach took only two to five times longer runtimes. In comparison with the full LUT model, the proposed hybrid model was up to one hundred times faster while increasing the average errors by only 3%. Finally, the proposed approach completed a leakage analysis of an OpenSparc T2 core of 4.5 million gates with a runtime of <5 min.1150Ysciescopu

    Bone marrow infiltration of lymphoma

    Get PDF
    corecore