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1 Introduction

Many structural models have attempted to explain the behavior of exchange
rates under the floating rate regime after the Bretton Woods system. Meese
and Rogoff (1983) found that a random walk model performs at least as well
as various structural and time series models for exchange rates in terms of
out-of-sample forecast. Meese and Rogoff considered three structural models
such as the flexible-price monetary (Frenkel-Bilson) model, the sticky price
monetary (Dornbush-Frankel) model and the sticky-price asset (Hooper-
Morton) model, and two time series models: univariate and vector autore-
gressive models. Many subsequent studies have replicated their finding using
different types of currencies and different forecasting models based on out-of-
sample experiments [Diebold and Nason (1990), Diebold et al. (1994), Engel
(1994), Frankel and Rose (1995) and Kilian and Taylor (2003)], thus sup-
porting the notion that exchange rates might follow a random walk model.

However, Liu and He (1991) rejected the random walk hypothesis for
three out of five currencies against the US dollar over the sample period
from August 1974 to March 1989 using the variance-ratio test developed
by Lo and MacKinlay (1988). Fong et al. (1997) reexamined the random
walk hypothesis for the five exchange rates used by Liu and He (1991), em-
ploying several improved variants of variance-ratio tests in Hochberg (1974),
Chow and Denning (1993) and Richardson and Smith (1991). It was found
that the random walk hypothesis is rejected for the full sample period and
the first subsample before October 1979 but is not rejected for the second
subsample after October 1979. Based on the assumption that the central
bank interventions can cause daily exchange rates to deviate from martin-
gale behavior, Yilmaz (2003) conducted the variance-ratio test with the daily
exchange rate from 1974 to 2001 in moving subsample windows with a fixed
length of 1,000 daily observations. By plotting the variance-ratio test statis-
tics as proposed by Hochberg (1974) and Richardson and Smith (1991) for
all subsample windows of seven currencies against the US dollar, Yilmaz
found that exchange rates tend to deviate from the random walk properties
during the exchange market intervention by central banks, but was not able
to test formally whether exchange rates follow a random walk model in the
presence of structural breaks caused by the interventions.

It emerges from the previous work that (i) the random walk model ap-
pears to be the best for exchange rates in terms of out-of-sample forecast, but
nonetheless (ii) the random walk model is often rejected when the variance-
ratio test is employed. In this paper, we attempt to resolve these apparently
contradictory empirical findings. Our view is that (i) when a model suc-
cessfully passes a battery of independent out-of-sample tests, it is likely to
describe the true process, and (ii) apart from the fact that the variance-ratio
test is inherently an in-sample test, it might be possible that researchers fail
to take into account all the relevant characteristics of the process when con-
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ducting the variance-ratio test. One characteristic we will focus on in this
paper is possible structural breaks in the exchange rate process.

Previous studies suggested that central bank interventions such as un-
expected monetary contraction and transaction of foreign assets against do-
mestic assets in the foreign exchange market can influence the level and vari-
ance of exchange rates, as documented in Dominguez (1998) and Dominguez
and Frankel (1993). The time series behavior of exchange rates might also
be affected by changes in economic fundamentals, external shocks such as
oil crises, and unexpected changes in monetary and fiscal policies. To take
into account a structural break of exchange rates, Liu and He (1991) and
Fong et al. (1997) divided their whole sample with 743 observations into two
subperiods before and after October 1979 when the Federal Reserve changed
the operating procedure.

Dividing the sample into several subsamples can be a way of dealing with
structural breaks. A problem in this approach is that the number of obser-
vations in some subsamples can be small. Small sample size can present two
potential problems in conducting the variance-ratio test. First, it obviously
leads to efficiency loss and reduces the power of the test as documented in Lo
and MacKinlay (1989), Richardson and Smith (1991), Chow and Denning
(1993) and Fong et al (1997). Secondly and more importantly, as demon-
strated in Lo and MacKinlay (1989) and Fong et al. (1997), when the sample
size is small, the sampling distribution of the variance-ratio statistic is not
well approximated by the asymptotic standard normal distribution. In this
paper, we propose a modification of the variance-ratio test using the full
sample and at the same time taking into account structural breaks in the
process.

The paper is organised as follows. In Section 2, we prove that the
variance-ratio test statistics of Lo and MacKinlay (1988) do not tend to the
standard normal distribution when there is a break in drift and we demon-
strate that in such circumstances, the probability of rejecting the Martingale
hypothesis goes to one when in fact the Martingale hypothesis is true. The
same phenomenon is analysed in finite samples by simulation in Section 3
and we propose a modified variance-ratio test in Section 4. Section 5 applies
both the standard variance-ratio tests of Lo and MacKinlay (1988) and our
new test to the exchange rates of four currencies. We have found that the
standard tests strongly reject the Martingale hypothesis while our tests do
not. Our empirical findings strongly indicate that rejecting the Martingale
hypothesis by the standard variance-ratio tests might have been induced by
failing to incorporate structural breaks into the testing procedure. Finally,
Section 6 provides a summary of the paper.
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2 Spurious rejections of the Martingale hypothesis
by variance-ratio tests

We consider the following process:

Xt = µt +Xt−1 + εt ; t = 1, 2, ..., T, (1)

or
rt = ∆Xt = µt + εt ; ∆Xt ≡ Xt −Xt−1. (2)

The drift term is specified as

µt = µ11(t ≤ [τT ]) + µ21([τT ] < t),

where 1(·) is the indicator function and [τT ] is the integer part of τT and
τ ∈ (0, 1). Whenever there is no confusion, we will use τT in place of
[τT ] from now on. The disturbance term εt is assumed to satisfy that
E(εt) = 0 and E(ε2t ) = σ2. Under the Martingale hypothesis, rt is not
serially correlated at all leads and lags; that is, E(εtεt−s) = 0 for t 6= s. We
also assume for convenience that X0 is observed. The specification of the
process in (1) and (2) for testing the Martingale hypothesis has been used in
the previous research. The only difference is that we allow a deterministic
break in the drift term.

Using the fact that the variance of the q−period return, Xt − Xt−q, is
equal to q times the variance of the one-period return, Xt−Xt−1, under the
Martingale hypothesis, Lo and MacKinaly (1988) developed the variance-
ratio test. The q−period return, rt (q) , is defined using overlapping obser-
vations:

rt(q) =
q−1X
i=0

rt−i = Xt −Xt−q.

Variance ratio statistics could be also based on non-overlapping returns, but,
as shown in Lo and MacKinlay (1988), using overlapping observations results
in a more efficient test. Hence, we only consider variance-ratio statistics
computed using overlapping observations. The test statistic is based on

M (q) =
σ̂2q

σ̂2
− 1,

where

σ̂2 =
1

T − 1

TX
t=1

(rt − µ̂)2, µ̂ =
1

T

TX
t=1

rt

σ̂2q =
T

q(T − q + 1)(T − q)

TX
t=q

{rt(q)− qµ̂}2.
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Lo and MacKinlay (1988) proved under the Martingale hypothesis with-

out a break in drift (µ1 = µ2) that (i) M (q)
p→ 0 and (ii) the standardized

variance-ratio statistic z(q) = T 1/2
³
2(2q−1)(q−1)

3q

´−1/2
M (q) converges in dis-

tribution to N(0, 1). Hence, given a specific value of q, appropriate critical
values can be chosen from N(0, 1) to ensure the asymptotically correct size
of the test. However, the following theorem demonstrates that it is not
possible to control the test size if there is a break in drift (µ1 6= µ2).

Theorem 1 Suppose that Xt is generated by (1) under the Martingale hy-
pothesis. Then,

M (q)
p→ qδ2τ(1− τ)

1 + δ2τ(1− τ)
,

where δ = σ−1|µ1 − µ2|.

We first note that the probability limit of M (q) is positive and depends
on three parameters; the standardized break size δ, the break time τ , and
the holding period q. It is obvious from the expression that when there is no
break (either δ = 0 or τ = 0, 1), the probability limit collapses to zero, which
corresponds to the standard result. An immediate consequence of Theorem
1 is that the standardized variance-ratio statistic z(q) diverges to infinity at
the rate of T 1/2; that is, T−1/2z(q) = Op(1). Thus, a routine application of
the statistic z(q) based on critical values from N(0, 1) is likely to result in
spurious rejections of the Martingale hypothesis even though the null is true.
As noted before, the severity of spurious rejections would depend on three
parameters; δ, τ , and q. A closer examination of the probability limit of
M (q) predicts that the phenomenon of spurious rejections would be more
pronounced when (i) the holding period q increases, (ii) the standardized
break size δ becomes larger and (iii) the structural break occurs in the middle
of the sample size (τ = 0.5). These predictions are confirmed in Figure 1 in
which we graph the probability limit against δ and τ while fixing the holding
period q at two. The graph clearly shows that the probability limit is an
increasing function of δ and is maximised when τ = 0.5.

3 Monte Carlo simulations

In the previous section, the phenomenon of spurious rejections has been
demonstrated in large samples. Naturally, it may be interesting to investi-
gate whether the same phenomenon can occur in finite samples and, if any,
how serious the size distortion might be in such circumstances. We generate
data through (1) and (2). The error terms εt are drawn from N(0, 1). We
normalise µ1 at zero and use various values of µ2 : µ2 = 0.1, 0.2, 0.3, 0.4.
Since σ = 1 and µ1 = 0, the standarised break size δ is now equal to µ2. In
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the simulations, we set T = 500, 1000 and q = 4, 8. The number of repli-
cations in all experiments is 1000. In Figure 2, for the specified values of
T and q, we plot the rejection probability of the test z(q) at the 5% signif-
icance level against the break fraction τ ranging from 0 to 1. Figure 2(i)
displays the results when T = 500 and q = 4, which indicates that the size
distortion is fairly mild for smaller values of µ2. However, when the break
fraction is around 0.5 and the standardized break size becomes larger, the
rejection probability can reach up to 30%. As we increase the holding period
q from 4 to 8 [Figure 2(ii)], and as we increase the sample size T from 500
to 1000 [Figure 2(iii) and Figure 2(iv)], the size distortion becomes more
pronounced. Obviously, the size distortion disappears as either τ → 0 or
τ → 1 in all figures.

In Figure 2, we have investigated only the case in which there is an
increase in drift; i.e. µ1 < µ2. We have simulated the opposite cases (a
decrease in drift) by setting µ2 = −0.1,−0.2,−0.3,−0.4. The results, as
expected from Theorem 1, are entirely symmetric and the plots are identical
to the ones in Figure 2. Hence, we do not report them.

Lo and MacKinlay (1988) also proposed a variance-ratio test that is
robust to general forms of heteroscedasticity using the heteroscedasticity-
consistent results of White (1980, 1984) and White and Domowitz(1984).
The heteroscedasticity-robust variance-ratio test statistic, denoted by z∗ (q),
is given by

z∗ (q) = V̂ −1/2M (q) , (3)

where

V̂ =
q−1X
j=1

∙
2 (q − j)

q

¸2
δ̂ (j) ,

δ̂ (j) =

PT
k=j+1 (rk − µ̂)2 (rk−j − µ̂)2hPT

k=1 (rk − µ̂)2
i2 .

Under the null hypothesis that returns are heteroscedastic but uncorre-
lated, Lo and MacKinlay showed that z∗ (q) is asymptotically distributed
as N(0, 1). We have repeated the same experiments as shown in Figure 2,
but replacing z(q) with z∗(q). We have found that the results are virtually
the same; that is, the same phenomenon of spurious rejections occur and
the magnitude of spurious rejections are identical for both z(q) and z∗(q).
For this reason, the results are not reported in this paper. Hence, using the
heteroscedasticity-robust variance-ratio test cannot provide any protection
against the size distortion problem when there is a break in drift.
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4 Modified variance-ratio tests

In many applications using exchange rates, it is usually assumed that struc-
tural break points are a priori known. For example, see Liu and He (1991)
and Fong et al. (1997). Assuming that the break fraction τ is known, the
spurious rejection problem described in the previous sections can be fixed
by slightly modifying the detrending procedure in the original variance-ratio
tests. Instead of demeaning the series rt using the whole sample, we demean
rt in each of the subsamples. This can be done by a simple regression. We
consider the following regression in which we regress rt on a constant and a
dummy variable dt defined as dt = 1[τT < t]

rt = β̂0 + β̂1dt + r̃t,

where r̃t is the residuals from the above LS regression. Our modified variance-
ratio statistic denoted zm(q) is now calculated based on r̃t as follows

1:

zm(q) = T
1/2
µ
2(2q − 1)(q − 1)

3q

¶−1/2
Mm (q) (4)

where

Mm (q) =
σ̂2qm

σ̂2m
− 1,

σ̂2m =
1

T − 1

TX
t=1

r̃2t ,

σ̂2qm =
T

q(T − q + 1)(T − q)

TX
t=q

⎛⎝q−1X
i=0

r̃t−i

⎞⎠2 .
Using the fact that β̂0

p→ µ1 and β̂1
p→ µ2 − µ1, it is straightforward to

show that zm(q) converges in distribution to N(0, 1). Moreover, the same
modification can be used to robustify the heteroscedasticity-robust variance-
ratio test in (3). We have repeated the same Monte Carlo experiments as
shown in Figure 2, but replacing z(q) with the new test zm(q). The results
are displayed in Figure 3 for the specified values of T and q, and it is clearly
demonstrated that the spurious rejection phenomenon has now disappeared.

We note that our regression-based procedure can easily be extended to a
situation in which there are multiple breaks as long as the break points are
assumed known. For example, suppose that there are three breaks points
denoted τ1, τ2 and τ3. In this case, we run the following regression:

rt = β̂0 + β̂1d1t + β̂2d2t + β̂3d3t + r̃t (5)

1The subscript m indicates that the test is a modified version of the corresponding
variance-ratio test.
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where d1t = 1 [τ1T < t ≤ τ2T − 1] , d2t = 1 [τ2T < t ≤ τ3T − 1] and d3t =
1 [τ3T < t] . The correctly modified variance-ratio test is now obtained using
the new residuals r̃t from the above regression (5) in the formula in (4).

5 Re-testing the Martingale hypothesis for exchange
rates

In this section, we apply our modified variance-ratio testing procedure to
revisit the Martingale hypothesis for exchange rates. Since many countries
shifted to the floating exchange system during the period between 1970
and 1973, our data set starts on January 2, 1974. For the empirical study,
we use weekly exchange rates for the following four currencies; Canadian
dollar (CAN), German mark (DM), Italian lira (ITL), and Switzerland franc
(SZF). The reason for using exchange rates from these four countries is that
(i) the preliminary application of the standardised heteroscedasticity-robust
variance-ratio test z∗(q) indicates that the Martingale hypothesis is rejected
for these countries and (ii) the exchange rate data from these countries
clearly show that there are three distinctive structural breaks.

The Canadian dollar and the Switzerland franc end on October 15, 2003.
Upon the introduction of the euro on January 1, 1999, data only extends
to December 30, 1998 for German mark and Italian lira participating in the
European Economic and Monetary Union. Exchange rates used in our study
are the noon buying rates in New York for cable transfers payable in foreign
currencies. All exchange rates are measured in the unit of foreign currency
per US dollar and can be downloaded from the Federal Reserve board’s
website (http://www.federalreserve.gov/releases/h10/Hist). We denote by
St Wednesday’s exchange rates and the corresponding weekly returns rt are
calculated through rt = lnSt − lnSt−1. If Wednesday’s exchange rate is
missing due to a holiday, Thursday’s exchange rate (or Tuesday’s if Thurs-
day’s is missing) is used because holidays occur least on Wednesdays and
Thursdays. There are 1555 weekly observations for CAN and SZF and 1304
for DM and ITL.

Figure 4 provides the time series plots of the weekly exchange rates of
four countries during the post-Bretton-Woods system of flexible exchange
rates. As clearly indicated in the figures, there might exist three structural
break points (denoted τ1, τ2 and τ3). Germany and Italy have common
structural break points: January 1980 (τ1), March 1985 (τ2) and January
1988 (τ3). The German mark and the Italian lira generally tend to move
together from November 1979 when Germany and Italy joined Exchange
Rate Mechanism (ERM) under European Monetary System except for the
period between September 1992 and November 1996. This later disparity
may have been due to the fact that Italy seceded from ERM in September
1992 and reentered in November 1996. The SZF has also three break points:
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October 1978 (τ1), March1985 (τ2) and January 1988 (τ3), thus sharing the
same two break points as in both Germany and Italy.

For these three countries, the first break picks up the start of their depre-
ciation against the US$ in 1980 (or at the end of the 1970s). The combination
of high interest rates and low inflation rate in the US in that time period
caused the dollar to appreciate against most currencies. The real interest
rate in the US exhibited a sudden increase around the year 1980, which was
associated with a slight delay with the change in Federal Reserve’s monetary
control procedure in October 1979. The three exchange rates continued to
weaken throughout the early 1980s and reached all-time highs in early 1985.
The second break indicates the switch from the depreciation era to the ap-
preciation period in March 1985. The dollar’s value declined persistently
from 1985 to the end of 1987, mainly due to the large trade deficit in the
US during that period. The third break point denotes the end of the long
appreciation era in January 1988, which was caused by reduced US trade
deficit and high US interest rates.

Most currencies against the US dollar move similarly as described above
and these structural break points are consistent with the dates chosen by
Obstfeld (1989) and Dominguez and Frankel (1993). The Canadian dollar
exhibits a quite different pattern from the other three European currencies.
The average value of the changes in the CAN and its standard deviation
are smaller in the absolute value than other three currencies. Unlike other
European currencies, the CAN does not show a structural break in the early
1980s as chosen by Liu and He (1991). Nonetheless, the CAN currency also
appears to have three structural breaks: February 1986 (τ1), November 1991
(τ2) and November 2002 (τ3), as indicated in Figure 4(i).

After identifying the possible break points, we have applied a testing
procedure to check if there is statistical evidence to justify the choice. With
three break points, we have four possible drift terms denoted µ1, µ2, µ3 and
µ4. Each term is estimated by

µ̂i =
1

[τ iT ]− [τ i−1T ]

[τ iT ]X
t=[τ i−1T ]+1

rt,

where rt = lnSt − lnSt−1, τ0 = 0 and τ4 = 1. Table 1(a) presents the
estimates of µ̂i for each sub-period and for each country. It also reports the
sample standard deviations (denoted ŝi) of rt for each case. The estimates
of µ̂i are significantly different over subsamples and the changing sign of
µ̂i is entirely consistent with our previous discussion of the appreciation
and depreciation periods; that is, the sign of the sample mean is positive
(negative) when the exchange rate persistently depreciates (appreciates),
which is equivalent to having a positive (negative) drift term. Having made
such an observation, we have tested the null hypothesis H0 : µi = µi+1 (i =
1, 2, 3) for each country using a two-sample heteroscedasticity t−test. The
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null is rejected for all sub-periods and for all countries at the 1% significance
level. The p−values are reported in Table 1(b).

Lo and MacKinlay (1989) examined the size and power properties of the
standard variance-ratio tests for the Martingale hypothesis via Monte Carlo
simulations and found that the empirical size of the variance-ratio test is
close to its nominal value under the null hypothesis with independent and
identically distributed Gaussian errors as well as with heteroscedastic incre-
ments for sample sizes of greater than 32. But, when the holding period q
increases relative to the sample size, it was also found that the sampling dis-
tribution of the standard variance-ratio tests significantly deviates from the
asymptotic standard normal distribution. Fong et al. (1997) also conducted
a simulation study, suggesting a reasonable range of q for a given value of T .
They used the Komogorov-Smirnov D test for normality and found that the
null hypothesis of normality cannot be rejected at the 1% significance level
for values of q up to 16 when the sample size is 743. Taking into account
these results in the previous research, we take a conservative approach by
using q = 3, 4, 8 and 16, given that we have 1554 observations for CAN and
SZF and 1303 observations for DM and ITL.

First, we apply the z(q) test to the four exchange rates at 10% and
5% significance levels, assuming that there is no heteroscedasticity in the
error term. The testing results are displayed in Table 2. The evidence from
the data is pointing strongly against the Martingale hypothesis; the null is
rejected for q = 3, 4 in CAN, for q = 3, 4, 16 in SZF, and for all values of q
in both DM and ITL. Next, we apply our modified version zm(q), calculated
through the auxiliary LS regression in (5), in which the exact dates for
τ1, τ2 and τ3 have been already specified above. The results are also in
Table 2, which shows that (i) all the modified test statistics become much
smaller than the unmodified ones and (ii) we fail to reject the Martingale
hypothesis in all series but CAN. Even in that case, we reject the null at
the 10% significance level, only when q = 3.

The strong evidence against the Martingale hypothesis by the z(q) test
might have been caused by the possible presence of heteroscedasticity in
the considered exchange rates. Hence, we also apply the heteroscedasticity-
consistent variance-ratio test statistic z∗(q) whose results are in Table 3.
Table 3 indicates that heteroscedasticity must have played a role because we
have now a much smaller number of rejections of the Martingale hypothesis,
compared to the z(q) test; the null is rejected for q = 3 in CAN, for q = 8, 16
in SZF, for q = 8, 16 in ITL, and for all values of q in DM. The evidence has
been much weakened, but we still reject the null for all countries. Finally, we
apply our modified z∗m(q) test. Table 3 shows that the Martingale hypothesis
is not rejected in any cases.

10



6 Summary

This research has been mainly motivated by the apparentry contradictory
empirical findings in the literature on the role of the Martingale hypothesis
in formulating the correct model for exchange rates; some evidence support-
ing the hypothesis has been put forward while the opposite evidence has
surfaced via the variance-ratio test. We have demonstrated that, if a break
in drift is not properly taken into account, then the routine application of
the variance-ratio test can result in potentially large size distortion; reject-
ing the Martingale hypothesis 100% of the time asymptotically when the
process is actually a Martingale. Based on a simple regression approach,
we have proposed a modification of the test such that the size of the test is
correctly controlled. When the standard variance-ratio tests and our modi-
fied tests are applied to exchange rates of CAN, DM, ITL and SZF, the test
results clearly show that the rejection of the Martingale hypothesis by the
standard variance-ratio tests may have been caused by ignoring the presence
of structural breaks.

7 Appendix: Proof of Theorem 1

Recalling that Mr (q) = σ̂−2σ̂2q − 1, we first show examine the probability
limit of σ̂2 :

σ̂2 = T−1
TX
t=1

(rt − bµ)2 + op(1)
= τµ21 + (1− τ)µ22 + T

−1
TX
t=1

εt − bµ2
p→ σ2{1 + δ2τ(1− τ)} (6)

using that fact that bµ p→ τµ1 + (1− τ)µ2.

Next, we turn to the variance estimator based on q−period returns

σ̂2q = (qT )−1
TX
t=q

(rt (q)− qbµ)2 + op(1)
= q−1

q−1X
i=0

T−1
TX
t=q

(rt−i − bµ)2 + q−1 q−1X
i=0

q−1X
j=0(6=i)

T−1
TX
t=q

(rt−i − bµ) (rt−j − bµ) .
It is straightforward to show that

T−1
TX
t=q

(rt−i − bµ)2 p→ σ2{1 + δ2τ(1− τ)}
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T−1
TX
t=q

(rt−i − bµ) (rt−j − bµ) p→ σ2δ2τ(1− τ).

Hence, we have
σ̂2q

p→ σ2{1 + qδ2τ(1− τ)}. (7)

Combining the results in (6) and (7), we obtain the desired result:

M (q)
p→ qδ2τ(1− τ)

1 + δ2τ(1− τ)

where δ = σ−1|µ1 − µ2|.

References

[1] Chow, K.V., Denning, K.C., 1993. A simple multiple variance test.
Journal of Econometrics 59, 385—401.

[2] Diebold, F.X., Garneazabal, J., and Yilmaz, K., 1994. On cointegration
and exchange rate dynamics. Journal of Finance 49, 727—735.

[3] Diebold, F.X., Nason, J.A., 1990. Nonparmetric exchange rate predic-
tion? Journal of International Economics 28, 315—332.

[4] Dominguez, K, 1998. Central bank intervention and exchange rate
volatility. Journal of International Money and Finance 17, 161—190.

[5] Dominguez, K., Frankel, J., 1993. Does foreign exchange intervention
matter?: the portfolio effect. American Economic Review 83, 1356—69.

[6] Engel, C., 1994. Can Markov switching model forecast exchange rates?
Journal of International Economics 36, 151—165.

[7] Fong, W.M., Koh, S.K. and Ouliaris, S., 1997. Joint variance-ratio tests
of the Martingale hypothesis for exchange rates. Journal of Business and
Economic Statistics 15, 51—59.

[8] Frankel, J.A., Rose, A.,1995. Empirical research on nominal exchange
rates. Handbook of International Economics.

[9] Hochberg, Y., 1974. Some generalization of T-method in simulations
inference. Journal of Multivariate Analysis 4, 224—234.

[10] Kilian, L., Taylor, M.P., 2003. Why is it so difficult to beat the random
walk forecast of exchange rate? Journal of International Economics 60,
85—107.

12



[11] Liu, C.Y., He, J., 1991. A variance-ratio test of random walks in foreign
exchange rates. Journal of Finance 46, 773—785.

[12] Lo, A.W., MacKinlay, A.G., 1988. Stock market prices do not follow
random walks: evidence from a simple specification test. Review of
Financial Studies 1, 41—66.

[13] Lo, A.W., MacKinlay, A.G., 1989. The size and power of the variance
ratio test in finite samples. Journal of Econometrics 40, 203—238.

[14] Meese, R.A., Rogoff, K., 1983. Empirical exchange rate models of the
seventies: do they fit out of sample? Journal of International Economics
14, 3—24.

[15] Richardson, M., Smith, T. 1991. Tests of financial models in the pres-
ence of overlapping observations. Review of Financial Studies 4, 227—
254.

[16] White, H., 1980. A heteroscedasticity-consistent covariance matrix es-
timator and a direct test for heteroscedasticity. Econometrica 48, 817—
838.

[17] White, H., 1984. Asymptotic Theory for Econometricians, Academic
Press, New York.

[18] White, H., Domowitz, I, 1984. Nonlinear regression with dependent
observations. Econometrica 52, 143—162.

[19] Yilmaz, K., 2003. Martingale property of exchange rates and central
bank interventions. Journal of Business & Economic Statistics 21, 383—
395.

13



Table 1(a). Descriptive statistics for weekly returns
CAN SZF DM ITL

full sample
period

Jan. 2, ’74 -
Oct. 15, ’03

Jan. 2, ’74 -
Oct. 15, ’03

Jan. 2, ’74 -
Dec. 30, ’30

Jan. 2, ’74 -
Dec. 30, ’98

#Obs. 1554 1554 1303 1303
mean (µ̂1) 0.0002 -0.0006 -0.0004 0.0008

stand. dev. (ŝ1) 0.0063 0.0162 0.0146 0.0142

subperiod 1
Jan. 2, ’74 -
Feb. 5, ’86

Jan. 2, ’74 -
Sep. 27, ’78

Jan.2,’74-
Jan.9,’80

Jan.2,’74-
Jan.2,’80

#Obs. 631 247 314 313
mean (µ̂2) 0.0006 -0.0032 -0.0015 0.0008

stand. dev. (ŝ2) 0.0054 0.0143 0.0108 0.0114

subperiod 2
Feb.12,’86-
Oct.30,’91

Oct.4,’78-
Mar.6,’85

Jan.16,’80-
Mar.6,’85

Jan.9,’80-
Mar.13,’85

#Obs. 299 336 269 271
mean (µ̂2) -0.0008 0.0020 0.0025 0.0036

stand. dev. (ŝ3) 0.0056 0.0163 0.0150 0.0135

subperiod 3
Nov. 6, 1991 -
Oct. 9, 2002

Mar. 13, ’85 -
Dec. 30, ’87

Mar. 13, ’85 -
Dec. 30, ’87

Mar. 20, ’85 -
Dec. 30, ’87

T3 571 147 147 146
mean (µ̂3) 0.0006 -0.0055 -0.0051 -0.0040

stand. dev. (ŝ3) 0.0067 0.0195 0.0176 0.0161

subperiod 4
Nov. 16, ’02 -
Oct. 15, ’03

Jan. 6, ’88 -
Oct. 15, ’03

Jan. 6, ’88 -
Dec. 30, ’98

Jan. 6, ’88 -
Dec. 30, ’98

#Obs. 53 824 573 573
mean (µ̂4) -0.0035 0.0000 0.0001 0.0006

stand. dev. (ŝ4) 0.0107 0.0158 0.0150 0.0150

Table 1(b). P-values for two-sample heteroscedasticity t−tests
H0 CAN SZF DM ITL

µ1 = µ2 0.001 0.001 0.000 0.009
µ2 = µ3 0.001 0.001 0.000 0.000
µ3 = µ4 0.008 0.001 0.001 0.001
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Table 2. Variance-ratio test results using z (q) and zm (q)
q

3 4 8 16

CAN
z (q)
zm (q)

2.574a

1.708b
1.874b

0.843
0.979
-0.044

0.307
-1.493

DM
z (q)
zm (q)

2.132a

1.166
2.032a

0.886
2.067a

0.469
2.278a

0.164

ITL
z (q)
zm (q)

1.443
0.530

1.846b

0.775
2.560a

1.055
3.055a

1.002

SZF
z (q)
zm (q)

1.801b

0.945
1.834b

0.815
2.383a

0.995
2.561a

0.841
Note: The superscript a or b indicates that the test result is significant at
the 5% or 10% significance level respectively.
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Table 3. Variance-ratio test results using z∗ (q) and z∗m (q)
q

3 4 8 16

CAN
z∗ (q)
z∗m (q)

1.961a

1.331
1.447
0.665

0.780
-0.358

0.253
-1.412

DM
z∗ (q)
z∗m (q)

1.894b

1.037
1.763b

0.766
1.773b

0.400
1.997a

0.143

ITL
z∗ (q)
z∗m (q)

1.150
0.420

1.433
0.598

1.949b

0.797
2.411a

0.786

SZF
z∗ (q)
z∗m (q)

1.632
0.855

1.642
0.730

2.107a

0.882
2.228a

0.751
Note: The superscript a or b indicates that the test result is significant at
the 5% or 10% significance level respectively.
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