22 research outputs found

    The Human Melanoma Proteome Atlas—Complementing the melanoma transcriptome

    Get PDF
    The MM500 meta‐study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass‐spectrometry‐based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well‐annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein‐coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease

    Small molecule-induced destabilization of β-catenin and RAS is the ideal strategies for suppressing colorectal cancer

    No full text
    Background Mutations of adenomatous polyposis coli (APC) and KRAS play essential roles in the development of colorectal cancer (CRC) by forming an abnormal colon morphology. Despite intensive efforts to discover therapeutic strategies to re-transform cancer cells into normal cells, no effective approaches have been reported yet. Methods In this study, we aimed to identify therapeutic strategies for inducing morphological changes of tumor organoids to structures similar to the normal intestine in ApcMin/+/KrasG12DLA2 mice by using KYA1797K, a dual inhibitor of the Wnt/β-catenin and RAS signaling pathways. Results KYA1797K, previously identified as a dual inhibitor of the Wnt/β-catenin and RAS pathways, inhibited the growth of organoids derived from tumor cells of ApcMin/+/KrasG12DLA2 mice, with the transformation of benign tumor structures into normal structures, similar to bone morphogenetic protein 4 (BMP4), an intestinal differentiation signaling inducer. Conclusion Given the anti-cancer effects of KYA1797K and its ability to induce morphological changes similar to those elicited by BMP4 treatment, the dual suppression of Wnt/β-catenin and RAS signaling is a potential therapy for treating CRC

    Development of a Novel Class of Mitochondrial Ubiquinol–Cytochrome <i>c</i> Reductase Binding Protein (UQCRB) Modulators as Promising Antiangiogenic Leads

    No full text
    Recently, we identified a novel therapeutic target and a small molecule for regulating angiogenesis. Our study showed that ubiquinol–cytochrome <i>c</i> reductase binding protein (UQCRB) of the mitochondrial complex III plays a crucial role in hypoxia-induced angiogenesis via mitochondrial reactive oxygen species (ROS) mediated signaling. Herein, we developed new synthetic small molecules that specifically bind to UQCRB and regulate its function. To improve the pharmacological properties of 6-((1-hydroxynaphthalen-4-ylamino)­dioxysulfone)-2<i>H</i>-naphtho­[1,8-<i>bc</i>]­thiophen-2-one (HDNT), a small molecule that targets UQCRB, a series of HDNT derivatives were designed and synthesized. Several derivatives showed a significant increase in hypoxia inducible factor 1α (HIF-1α) inhibitory potency compared to HDNT. The compounds bound to UQCRB and suppressed mitochondrial ROS-mediated hypoxic signaling, resulting in potent inhibition of angiogenesis without inducing cytotoxicity. Notably, one of these new derivatives significantly suppressed tumor growth in a mouse xenograft model. Therefore, these mitochondrial UQCRB modulators could be potential leads for the development of novel antiangiogenic agents

    Proteomic Workflows for High-Quality Quantitative Proteome and Post-Translational Modification Analysis of Clinically Relevant Samples from Formalin-Fixed Paraffin-Embedded Archives

    No full text
    Well-characterized archival formalin-fixed paraffin-embedded (FFPE) tissues are of much value for prospective biomarker discovery studies, and protocols that offer high throughput and good reproducibility are essential in proteomics. Therefore, we implemented efficient paraffin removal and protein extraction from FFPE tissues followed by an optimized two-enzyme digestion using suspension trapping (S-Trap). The protocol was then combined with TMTpro 16plex labeling and applied to lung adenocarcinoma patient samples. In total, 9585 proteins were identified, and proteins related to the clinical outcome were detected. Because acetylation is known to play a major role in cancer development, a fast on-trap acetylation protocol was developed for studying endogenous lysine acetylation, which allows identification and localization of the lysine acetylation together with quantitative comparison between samples. We demonstrated that FFPE tissues are equivalent to frozen tissues to study the degree of acetylation between patients. In summary, we present a reproducible sample preparation workflow optimized for FFPE tissues that resolves known proteomic-related challenges. We demonstrate compatibility of the S-Trap with isobaric labeling and for the first time, we prove that it is feasible to study endogenous lysine acetylation stoichiometry in FFPE tissues, contributing to better utility of the existing global tissue archives. The MS proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifiers PXD020157, PXD021986, and PXD021964

    An observational study on the molecular profiling of primary melanomas reveals a progression dependence on mitochondrial activation

    No full text
    Melanoma in advanced stages is one of the most aggressive tumors and the deadliest of skin cancers. To date, the histopathological staging focuses on tumor thickness, and clinical staging is a major estimate of the clinical behavior of primary melanoma. Here we report on an observational study with in‐depth molecular profiling at the protein level including post-translational modifications (PTMs) on eleven primary tumors from melanoma patients. Global proteomics, phosphoproteomics, and acetylomics were performed on each sample. We observed an up‐regulation of key mitochondrial functions, including the mitochondrial translation machinery and the down‐regulation of structural proteins involved in cell adhesion, the cytoskeleton organization, and epidermis development, which dictates the progression of the disease. Additionally, the PTM level pathways related to RNA processing and transport, as well as chromatin organization, were dysregulated in relation to the progression of melanoma. Most of the pathways dysregulated in this cohort were enriched in genes differentially expressed at the transcript level when similar groups are compared or metastasis to primary melanomas. At the genome level, we found significant differences in the mutation profiles between metastatic and primary melanomas. Our findings also highlighted sex‐related differences in the molecular profiles. Remarkably, primary melanomas in women showed higher levels of antigen processing and presentation, and activation of the immune system response. Our results provide novel insights, relevant for developing personalized precision treatments for melanoma patients
    corecore