239 research outputs found
Design is Everywhere, But Nowhere in Patent Analytics
The number of design patents has grown significantly in the last 140 years. However, a data-driven approach for design patents has been overlooked and underutilised in the design management and innovation research communities. Through the prism of a patent professional, data analyst and designer, this photo essay demystifies the complexity of design patent data and sheds light on the underlying value of design as it features among a range of diverse innovation activities. Patent network analysis and visualisation techniques enable the building of a series of patent citation maps and co-inventor networks. Cases from renowned companies—Apple, Dyson, Samsung, and LG electronics— reveal different shapes of innovation activities, focusing on product diversification strategies, collaboration patterns and design-technology cross-pollination flows
A biological function based biomarker panel optimization process.
Implementation of multi-gene biomarker panels identified from high throughput data, including microarray or next generation sequencing, need to be adapted to a platform suitable in a clinical setting such as quantitative polymerase chain reaction. However, technical challenges when transitioning from one measurement platform to another, such as inconsistent measurement results can affect panel development. We describe a process to overcome the challenges by replacing poor performing genes during platform transition and reducing the number of features without impacting classification performance. This approach assumes that a diagnostic panel reflects the effect of dysregulated biological processes associated with a disease, and genes involved in the same biological processes and coordinately affected by a disease share a similar discriminatory power. The utility of this optimization process was assessed using a published sepsis diagnostic panel. Substitution of more than half of the genes and/or reducing genes based on biological processes did not negatively affect the performance of the sepsis diagnostic panel. Our results suggest a systematic gene substitution and reduction process based on biological function can be used to alleviate the challenges associated with clinical development of biomarker panels
Comparison of total body irradiation-based or non-total body irradiation-based conditioning regimens for allogeneic stem cell transplantation in pediatric leukemia patients
Purpose : This study aims to compare the outcome of total body irradiation (TBI)- or non-TBI-containing conditioning regimens for leukemia in children. Methods : We retrospectively evaluated 77 children conditioned with TBI (n=40) or non-TBI (n=37) regimens, transplanted at Chonnam National University Hospital between January 1996 and December 2007. The type of transplantation, disease status at the time of transplant, conditioning regimen, engraftment kinetics, development of graft-versus-host disease (GVHD), complications, cause of deaths, overall survival (OS), and event-free survival (EFS) were compared between the 2 groups. Results : Among 34 patients with acute lymphoblastic leukemia (ALL), 28 (82.4%) were in the TBI group, while 72.7% (24/33) of patients with myeloid leukemia were in the non-TBI group. Although the 5-year EFS of the 2 groups was similar for all patients (62% vs 63%), the TBI group showed a better 5-year EFS than the non-TBI group when only ALL patients were analyzed (65% vs 17%; P =0.005). In acute myelogenous leukemia patients, the non-TBI group had better survival tendency (73% vs 38%; P=0.089). The incidence of GVHD, engraftment, survival, cause of death, and late complications was not different between the 2 groups. Conclusion : The TBI and non-TBI groups showed comparable results, but the TBI group showed a significantly higher 5-year EFS than the non-TBI group in ALL patients. Further prospective, randomized controlled studies involving larger number of patients are needed to assess the late-onset complications and to compare the socioeconomic quality of life
Lumbar plexopathy after radical nephrectomy -A case report-
Lumbar plexopathy is characterized by an abrupt onset of sensory disturbances, weakness, and loss of deep tendon reflexes of lower extremities. The various causes of lumbar plexopathy include trauma, infections, space-occupying lesion, vascular diseases, metabolic diseases, and the use of drugs such as heroin. Postoperative rhabdomyolysis occurs secondary to prolonged muscle compression due to surgical positioning. Herein, we report a case of lumbar plexopathy, complicating an injury to the paraspinal muscle and iliopsoas muscle that occurred in the flexed lateral decubitus position following radical nephrectomy
A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus.
MicroRNAs (miRNAs) are small noncoding RNAs that modulate the cellular transcriptome at the post-transcriptional level. miRNA plays important roles in different disease manifestation, including type 2 diabetes mellitus (T2DM). Many studies have characterized the changes of miRNAs in T2DM, a complex systematic disease; however, few studies have integrated these findings and explored the functional effects of the dysregulated miRNAs identified. To investigate the involvement of miRNAs in T2DM, we obtained and analyzed all relevant studies published prior to 18 October 2016 from various literature databases. From 59 independent studies that met the inclusion criteria, we identified 158 dysregulated miRNAs in seven different major sample types. To understand the functional impact of these deregulated miRNAs, we performed targets prediction and pathway enrichment analysis. Results from our analysis suggested that the altered miRNAs are involved in the core processes associated with T2DM, such as carbohydrate and lipid metabolisms, insulin signaling pathway and the adipocytokine signaling pathway. This systematic survey of dysregulated miRNAs provides molecular insights on the effect of deregulated miRNAs in different tissues during the development of diabetes. Some of these miRNAs and their mRNA targets may have diagnostic and/or therapeutic utilities in T2DM
Circulating microRNAs and life expectancy among identical twins
Human life expectancy is influenced not only by longevity assurance mechanisms and disease susceptibility loci but also by the environment, gene–environment interactions, and chance. MicroRNAs (miRNAs) are a class of small noncoding RNAs closely related to genes. Circulating miRNAs have been shown as promising noninvasive biomarkers in the development of many pathophysiological conditions. However, the concentration of miRNA in the circulation may also be affected by environmental factors. We used a next-generation sequencing platform to assess the association of circulating miRNA with life expectancy, for which deaths are due to all causes independent of genes. In addition, we showed that miRNAs are present in 41-year archived plasma samples, which may be useful for both life expectancy and all-cause mortality risk assessment. Plasma miRNAs from nine identical male twins were profiled using next-generation sequencing. The average absolute difference in the minimum life expectancy was 9.68 years. Intraclass correlation coefficients were above 0.4 for 50% of miRNAs. Comparing deceased twins with their alive co-twin brothers, the concentrations were increased for 34 but decreased for 30 miRNAs. Identical twins discordant in life expectancy were dissimilar in the majority of miRNAs, suggesting that environmental factors are pivotal in miRNAs related to life expectancy
In-stent restenosis-prone coronary plaque composition: A retrospective virtual histology-intravascular ultrasound study
Â
Background: The mechanism of in-stent restenosis (ISR) is multifactorial, which includes biological, mechanical and technical factors. This study hypothesized that increased inflammatory reaction, which is known to be an important atherosclerotic process, at a culprit lesion may lead to higher restenosis rates.
Methods: The study population consisted of 241 patients who had undergone percutaneous coronary intervention with virtual histology-intravascular ultrasound (VH-IVUS) and a 9-month follow-up coronary angiography. Compared herein is the coronary plaque composition between patients with ISR and those without ISR.
Results: Patients with ISR (n = 27) were likely to be older (66.2 ± 9.5 years vs. 58.7 ± 11.7 years, p = 0.002) and have higher levels of high-sensitivity C-reactive protein (hs-CRP, 1.60 ± 3.59 mg/dL vs. 0.31 ± 0.76 mg/dL, p < 0.001) than those without ISR (n = 214). VH-IVUS examination showed that percent necrotic core volume (14.3 ± 8.7% vs. 19.5 ± 9.1%, p = 0.005) was higher in those without ISR than those with ISR. Multivariate analysis revealed that hs-CRP (odds ratio [OR] 3.334, 95% conÂfidence interval [CI] 1.158–9.596, p = 0.026) and age (OR 3.557, 95% CI 1.242–10.192, p = 0.018) were associated with ISR.
Conclusions: This study suggests that ISR is not associated with baseline coronary plaque composition but is associated with old age and increased expression of the inflammatory marker of hs-CRP. (Cardiol J 2018; 25, 1: 7–13
sRNAnalyzer-a flexible and customizable small RNA sequencing data analysis pipeline.
Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline-sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/
- …