16 research outputs found

    Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Abstract Background The extent to which metastatic tumors further evolve by accumulating additional mutations is unclear and has yet to be addressed extensively using next-generation sequencing of high-grade serous ovarian cancer. Methods Eleven spatially separated tumor samples from the primary tumor and associated metastatic sites and two normal samples were obtained from a Stage IIIC ovarian cancer patient during cytoreductive surgery prior to chemotherapy. Whole exome sequencing and copy number analysis were performed. Omental exomes were sequenced with a high depth of coverage to thoroughly explore the variants in metastatic lesions. Somatic mutations were further validated by ultra-deep targeted sequencing to sort out false positives and false negatives. Based on the somatic mutations and copy number variation profiles, a phylogenetic tree was generated to explore the evolutionary relationship among tumor samples. Results Only 6% of the somatic mutations were present in every sample of a given case with TP53 as the only known mutant gene consistently present in all samples. Two non-spatial clusters of primary tumors (cluster P1 and P2), and a cluster of metastatic regions (cluster M) were identified. The patterns of mutations indicate that cluster P1 and P2 diverged in the early phase of tumorigenesis, and that metastatic cluster M originated from the common ancestral clone of cluster P1 with few somatic mutations and copy number variations. Conclusions Although a high level of intratumor heterogeneity was evident in high-grade serous ovarian cancer, our results suggest that transcoelomic metastasis arises with little accumulation of somatic mutations and copy number alterations in this patient

    Activation of LXRɑ/β by cholesterol in malignant ascites promotes chemoresistance in ovarian cancer

    Get PDF
    Abstract Background The purpose of this study was to investigate the role of malignant ascites tumor microenvironment in ovarian cancer progression and chemoresistance. Methods A total of 45 patients with ovarian cancer and three benign ascites were collected at the time of clinical intervention. Ascites cholesterol levels were quantitated using cholesterol quantitation kit and recurrence free survival (RFS) of ovarian cancer patients were collected. The sensitivity of ovarian cancer cells to cisplatin (CDDP) and paclitaxel (PAC) were assessed by viability assay, flow cytometry and protein expression. Receiver operating characteristics (ROC) curve and Youden index analysis were applied to calculate the optimal cut-off values for ascites cholesterol. Kaplan-Meier curve were applied to compare RFS between high and low ascites cholesterol levels in ovarian cancer patients. Results Here we show that cholesterol is elevated in malignant ascites and modulates the sensitivity of ovarian cancer cells to CDDP and PAC by upregulating the expression of drug efflux pump proteins, ABCG2 and MDR1, together with upregulation of LXRɑ/β, the cholesterol receptor. Transfection of LXRɑ/β siRNA inhibited cholesterol-induced chemoresistance and upregulation of MDR1. In addition, the cholesterol level in malignant ascites was negatively correlated with number of CDDP-induced apoptotic cell death, but not with that of PAC-induced apoptotic cell death. Cholesterol depletion by methyl beta cyclodextrin (MβCD) inhibited malignant ascites-induced chemoresistance to CDDP and upregulation of MDR1 and LXRɑ/β. For patients with ovarian cancer, high cholesterol level in malignant ascites correlated with short RFS. Conclusions High cholesterol in malignant ascites contributes to poor prognosis in ovarian cancer patients, partly by contributing to multidrug resistance through upregulation of MDR1 via activation of LXRɑ/β

    Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy

    No full text
    The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types. Plant-derived natural compounds offer regulation on various signaling cascades and have been applied for the treatment of multiple diseases, including cancer. Accumulated evidence provides the possibility of efficacy of phytochemicals in combinational with other therapeutic agents of ICIs, effectively modulating immune checkpoint-related signaling molecules. Recently, several phytochemicals have been reported to show the modulatory effects of immune checkpoints in various cancers in in vivo or in vitro models. This review summarizes druggable immune checkpoints and their regulatory factors. In addition, phytochemicals that are capable of suppressing PD-1/PD-L1 binding, the best-studied target of ICI therapy, were comprehensively summarized and classified according to chemical structure subgroups. It may help extend further research on phytochemicals as candidates of combinational adjuvants. Future clinical trials may validate the synergetic effects of preclinically investigated phytochemicals with ICI therapy

    ROS-Induced SIRT2 Upregulation Contributes to Cisplatin Sensitivity in Ovarian Cancer

    No full text
    Cisplatin resistance remains a significant obstacle for improving the clinical outcome of ovarian cancer patients. Recent studies have demonstrated that cisplatin is an important inducer of intracellullar reactive oxygen species (ROS), triggering cancer cell death. Sirtuin 2 (SIRT2), a member of class III NAD+ dependent histone deacetylases (HDACs), has been reported to be involved in regulating cancer hallmarks including drug response. In this study, we aimed to identify the role of SIRT2 in oxidative stress and cisplatin response in cancer. Two ovarian cancer cell lines featuring different sensitivities to cisplatin were used in this study. We found different expression patterns of SIRT2 in cisplatin-sensitive (A2780/S) and cisplatin-resistant (A2780/CP) cancer cells with cisplatin treatment, where SIRT2 expression was augmented only in A2780/S cells. Furthermore, cisplatin-induced ROS generation was responsible for the upregulation of SIRT2 in A2780/S cells, whereas overexpression of SIRT2 significantly enhanced the sensitivity of cisplatin-resistant counterpart cells to cisplatin. Our study proposes that targeting SIRT2 may provide new strategies to potentiate platinum-based chemotherapy in ovarian cancer patients
    corecore