3,206 research outputs found

    Claspin and the Activated Form of ATR-ATRIP Collaborate in the Activation of Chk1

    Get PDF
    Claspin is necessary for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. ATR possesses a regulatory partner called ATRIP. We have studied the respective roles of ATR-ATRIP and Claspin in the activation of Chk1. ATR-ATRIP bound well to various DNA templates in Xenopus egg extracts. ATR-ATRIP bound to a single-stranded DNA template was weakly active. By contrast, the ATR-ATRIP complex on a DNA template containing both single- and double-stranded regions displayed a large increase in kinase activity. This observation suggests that ATR-ATRIP normally undergoes activation upon association with specific nucleic acid structures at DNA replication forks. Without Claspin, activated ATR-ATRIP phosphorylated Chk1 weakly in a cell-free reaction. The addition of Claspin to this reaction strongly stimulated the phosphorylation of Chk1 by ATR-ATRIP. Claspin also induced significant autophosphorylation of Chk1 in the absence of ATR-ATRIP. Taken together, these results indicate that the checkpoint-dependent phosphorylation of Chk1 is a multistep process involving activation of the ATR-ATRIP complex at replication forks and presentation of Chk1 to this complex by Claspin

    Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases

    Get PDF
    We define phosphovariants as genetic variations that change phosphorylation sites or their interacting kinases. Considering the essential role of phosphorylation in protein functions, it is highly likely that phosphovariants change protein functions and may constitute a proportion of the mechanisms by which genetic variations cause individual differences or diseases. We categorized phosphovariants into three subtypes and developed a system that predicts them. Our method can be used to screen important polymorphisms and help to identify the mechanisms of genetic diseases

    Expression and Identification of HERV-W Family in Japanese Monkeys (Macaca fuscata)

    Get PDF
    We investigated structural genes (gag, pol, env) of HERV-W family in the Macaca fuscata (Japanese monkey). Those genes are expressed in various tissues (testis, prostate, kidney, cerebellum, thymus, pancreas, intestine, stomach, ovary) of the Japanese monkey in RT-PCR and sequencing analyses. Nine clones for gag, thirty-one clones for pol and thirty-four clones for env fragments of the HERVW family in monkey tissues were identified and analyzed. These clones showed a high degree of sequence similarity, 82.2-84.7% for gag, 88.4-91.7% for pol, and 90.8-95.4% for env, to those of HERV-W family. Translation to amino acids in all clones derived from the monkey indicated that they showed multiple interruptions of frameshifts and termination codons by deletion/insertion or point mutation. Identical sequences from different tissues of the monkey were found in env and pol clones of the HERV-W family

    Multiple redundant sequence elements within the fission yeast ura4 replication origin enhancer

    Get PDF
    BACKGROUND: Some origins in eukaryotic chromosomes fire more frequently than others. In the fission yeast, Schizosaccharomyces pombe, the relative firing frequencies of the three origins clustered 4-8 kbp upstream of the ura4 gene are controlled by a replication enhancer - an element that stimulates nearby origins in a relatively position-and orientation-independent fashion. The important sequence motifs within this enhancer were not previously localized. RESULTS: Systematic deletion of consecutive segments of ~50, ~100 or ~150 bp within the enhancer and its adjacent core origin (ars3002) revealed that several of the ~50-bp stretches within the enhancer contribute to its function in partially redundant fashion. Other stretches within the enhancer are inhibitory. Some of the stretches within the enhancer proved to be redundant with sequences within core ars3002. Consequently the collection of sequences important for core origin function was found to depend on whether the core origin is assayed in the presence or absence of the enhancer. Some of the important sequences in the core origin and enhancer co-localize with short runs of adenines or thymines, which may serve as binding sites for the fission yeast Origin Recognition Complex (ORC). Others co-localize with matches to consensus sequences commonly found in fission yeast replication origins. CONCLUSIONS: The enhancer within the ura4 origin cluster in fission yeast contains multiple sequence motifs. Many of these stimulate origin function in partially redundant fashion. Some of them resemble motifs also found in core origins. The next step is to identify the proteins that bind to these stimulatory sequences

    Simultaneous deletion of floxed genes mediated by CaMKIIa-Cre in the brain and in male germ cells: application to conditional and conventional disruption of Go-alfa

    Get PDF
    The Cre/LoxP system is a well-established approach to spatially and temporally control genetic inactivation. The calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) promoter limits expression to specific regions of the forebrain and thus has been utilized for the brain-specific inactivation of the genes. Here, we show that CaMKIIα-Cre can be utilized for simultaneous inactivation of genes in the adult brain and in male germ cells. Double transgenic Rosa26+/stop-lacZ::CaMKIIα-Cre+/Cre mice generated by crossing CaMKIIα-Cre+/Cre mice with floxed ROSA26 lacZ reporter (Rosa26+/stop-lacZ) mice exhibited lacZ expression in the brain and testis. When these mice were mated to wild-type females, about 27% of the offspring were whole body blue by X-gal staining without inheriting the Cre transgene. These results indicate that recombination can occur in the germ cells of male Rosa26+/stop-lacZ::CaMKIIα-Cre+/Cre mice. Similarly, when double transgenic Gnao+/f::CaMKIIα-Cre+/Cre mice carrying a floxed Go-alpha gene (Gnaof/f) were backcrossed to wild-type females, approximately 22% of the offspring carried the disrupted allele (GnaoΔ) without inheriting the Cre transgene. The GnaoΔ/Δ mice closely resembled conventional Go-alpha knockout mice (Gnao−/−) with respect to impairment of their behavior. Thus, we conclude that CaMKIIα-Cre mice afford recombination for both tissue- and time-controlled inactivation of floxed target genes in the brain and for their permanent disruption. This work also emphasizes that extra caution should be exercised in utilizing CaMKIIα-Cre mice as breeding pairs.Fil: Choi, Chan-Il. Ajou University. School of Medicine; Corea del SurFil: Yoon, Sang-Phil. Ajou University. School of Medicine; Corea del SurFil: Choi, Jung-Mi. Ajou University. School of Medicine; Corea del SurFil: Kim, Sung-Soo. Ajou University. School of Medicine; Corea del SurFil: Lee, Young-Don. Ajou University. School of Medicine; Corea del SurFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences; Estados Unidos. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Suh-Kim. Haeyoung. Ajou University. School of Medicine; Corea del Su
    corecore