6,800 research outputs found

    Study on Two-Dimensional Transition Metal Dichalcogenide-Based Semiconductor-Graphene Heterostructures

    Get PDF
    Department of Materials Science and EngineeringFollowing the rise in popularity of various two-dimensional (2D) materials, e.g., graphene (Gr), hexagonal boron nitride (h-BN), phosphorene, and transition metal dichalcogenides (TMDs), the stacked structure of these layered 2D materials (called van der Waals heterostructures) has played an important role in overcoming the limitations of individual 2D materials and expanding the range of attainable properties for use in various fields. In this thesis, we introduced the source contact geometry between a source and a substrate and optimized the direct growth method to obtain high-quality and uniform WS2/Gr heterostructures with strong interlayer coupling. The obtained, epitaxially grown WS2/Gr heterostructure possesses increased domain sizes and an enhanced coverage of monolayer WS2 without compromising the quality of the WS2 or significantly damaging the underlying graphene. Particularly, the symmetrical and narrow photoluminescence (PL) peak reveals the superior crystallinity of the grown WS2. This result is in contrast to those obtained by different conventional methods, such as the exfoliation method and CVD growth with conventional opened geometries. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced by interaction between material and gas molecules in air, which poses a barrier to further application and manufacture. To overcome this, it is necessary to understand the origin of material instability and degradation processes in air, as well as developing strategies to extend air-stabilty. The long-term investigations on air stability indicate that the resulting WS2/Gr heterostructures exhibit outstanding stability, in contrast to the general short-term degradation of 2H phase TMD (2H-TMDs) flakes grown on conventional substrates. This results not only describe the superior crystallinity of as-grown WS2 on graphene, but electron microscopy images, X-ray photoelectron spectroscopy (XPS) results, and Photoluminescence (PL) spectra collected over months suggest that graphene serves a new role by obstructing the aging propagation. This result shows how important interlayer interactions are in the stacking configuration of the vdW heterostructure. As an additional study, we show that the characteristics of the subsequent layer in vertical van der Waals (vdW) heterostructure are considerably affected by the structural defects of the template layer, comparing two types of directly synthesized WS2 flakes on CVD grapheneon the pristine basal plane of graphene (B-WS2) and on graphene defects (D-WS2). Both of WS2 flakes show the same crystal structure without atomic displacement and lattice distortion. However, they strongly influenced by interlayer interactions between the stacked layers, affecting the physical and electrical properties including deformability, thermal stability, and junction property. Combined experimental and theoretical studies have shown that the difference in the properties of D-WS2 flakes could be originated from the covalent bonds formed via W atomic bridges with hybridized orbitals at defect sites of graphene. These results suggest that it is importance to understand the interlayer interactions in 2D vdW heterostructures.clos

    Automatic Sense Disambiguation for Target Word Selection

    Get PDF

    HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning

    Full text link
    With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, HARE, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.Comment: Findings of EMNLP 2023; The first three authors contribute equall

    Simultaneous VLBI Astrometry of H2O and SiO Masers toward the Semiregular Variable R Crateris

    Full text link
    We obtained, for the first time, astrometrically registered maps of the 22.2 GHz H2O and 42.8, 43.1, and 86.2 GHz SiO maser emission toward the semiregular b-type variable (SRb) R Crateris, at three epochs (2015 May 21, and 2016 January 7 and 26) using the Korean Very-long-baseline Interferometry Network. The SiO masers show a ring-like spatial structure, while the H2O maser shows a very asymmetric one-side outflow structure, which is located at the southern part of the ring-like SiO maser feature. We also found that the 86.2 GHz SiO maser spots are distributed in an inner region, compared to those of the 43.1 GHz SiO maser, which is different from all previously known distributions of the 86.2 GHz SiO masers in variable stars. The different distribution of the 86.2 GHz SiO maser seems to be related to the complex dynamics caused by the overtone pulsation mode of the SRb R Crateris. Furthermore, we estimated the position of the central star based on the ring fitting of the SiO masers, which is essential for interpreting the morphology and kinematics of a circumstellar envelope. The estimated stellar coordinate corresponds well to the position measured by Gaia

    Gas-Filled Phospholipid Nanoparticles Conjugated with Gadolinium Play a Role as a Potential Theragnostics for MR-Guided HIFU Ablation

    Get PDF
    To develop a long-circulating theragnostics, meaning therapeutics and diagnostics for MR-guided HIFU ablation, we designed and prepared Gd-C5F12-phospholipid nanobubbles (PLNs) 30–100 nm in diameter. The biochemical and physical characterization of Gd-C5F12-PLNs were performed. Since Gd-C5F12-PLN-50 (Φ = 50 nm) and Gd-C5F12-PLN-100 (Φ = 100 nm) enhanced the hyperthermal effect of HIFU size- and concentration-dependently in a tissue-mimicking phantom, its circulation, distribution, tumor accumulation and tumor ablation were examined in tumor-bearing mice. The plasma-half life of Gd-C5F12-PLNs was longer than 1.5 hrs. Gd-C5F12-PLNs mainly accumulated in the liver and the spleen, suggesting that they are slowly secreted through the hepatobiliary pathway. Monitored by the T1 signal intensity of MR, Gd-C5F12-PLNs accumulated in tumor tissues for 8 hours in mice. HIFU with Gd-C5F12-PLN-100 showed the increased tumor ablation area as compared with HIFU alone. The results suggest that Gd-C5F12-PLNs exhibit a potential theragnostics for MR-guided HIFU ablation

    Programming emergent symmetries with saddle-splay elasticity

    Get PDF
    The director field adopted by a confined liquid crystal is controlled by a balance between the externally imposed interactions and the liquid’s internal orientational elasticity. While the latter is usually considered to resist all deformations, liquid crystals actually have an intrinsic propensity to adopt saddle-splay arrangements, characterised by the elastic constant K24. In most realisations, dominant surface anchoring treatments suppress such deformations, rendering K24 immeasurable. Here we identify regimes where more subtle, patterned surfaces enable saddle-splay effects to be both observed and exploited. Utilising theory and continuum calculations, we determine experimental regimes where generic, achiral liquid crystals exhibit spontaneously broken surface symmetries. These provide a new route to measuring K24. We further demonstrate a multistable device in which weak, but directional, fields switch between saddle-splay-motivated, spontaneously-polar surface states. Generalising beyond simple confinement, our highly scalable approach offers exciting opportunities for low-field, fast-switching optoelectronic devices which go beyond current technologies

    Anti-Obesity and Anti-Adipogenic Effects of Chitosan Oligosaccharide (GO2KA1) in SD Rats and in 3T3-L1 Preadipocytes Models

    Get PDF
    Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p \u3c 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level

    ACTIVE: Towards Highly Transferable 3D Physical Camouflage for Universal and Robust Vehicle Evasion

    Full text link
    Adversarial camouflage has garnered attention for its ability to attack object detectors from any viewpoint by covering the entire object's surface. However, universality and robustness in existing methods often fall short as the transferability aspect is often overlooked, thus restricting their application only to a specific target with limited performance. To address these challenges, we present Adversarial Camouflage for Transferable and Intensive Vehicle Evasion (ACTIVE), a state-of-the-art physical camouflage attack framework designed to generate universal and robust adversarial camouflage capable of concealing any 3D vehicle from detectors. Our framework incorporates innovative techniques to enhance universality and robustness, including a refined texture rendering that enables common texture application to different vehicles without being constrained to a specific texture map, a novel stealth loss that renders the vehicle undetectable, and a smooth and camouflage loss to enhance the naturalness of the adversarial camouflage. Our extensive experiments on 15 different models show that ACTIVE consistently outperforms existing works on various public detectors, including the latest YOLOv7. Notably, our universality evaluations reveal promising transferability to other vehicle classes, tasks (segmentation models), and the real world, not just other vehicles.Comment: Accepted for ICCV 2023. Main Paper with Supplementary Material. Project Page: https://islab-ai.github.io/active-iccv2023
    corecore