61 research outputs found

    The biological significance of non-enzymatic reaction of menadione with plasma thiols: enhancement of menadione-induced cytotoxicity to platelets by the presence of blood plasma

    Get PDF
    AbstractTo test the hypothesis that the non-enzymatic reaction of quinones with thiols in plasma can generate reactive oxygens (ROS), thereby leading to potentiated cellular toxicity, we have studied the effect of a representative quinone compound, menadione, on plasma isolated from rats. The experimental results are as follows: (1) menadione generated ROS via non-enzymatic reaction with protein thiols in plasma; (2) the presence of plasma increased menadione-induced cytotoxicity to platelets; (3) pretreatment of plasma with a thiol-depleting agent significantly suppressed menadione-induced ROS and cytotoxicity. These results suggest that the non-enzymatic reaction of menadione with plasma thiols could be an important process in quinone-induced cellular toxicity

    Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway

    Get PDF
    Additional file 2: Table S1. Temporal changes (%) of ER-Îą and hematopoietic phenotypes during hiPSC-derived hematopoietic differentiation

    Molecular cloning of the Ecotin gene in Escherichia coli

    Get PDF
    AbstractThe nucleotide sequence of a 876 bp region in E. coli chromosome that encodes Ecotin was determined. The proposed coding sequence for Ecotin is 486 nucleotides long, which would encode a protein consisting of 162 amino acids with a calculated molecular weight of 18 192 Da. The deduced primary sequence of Ecotin includes a 20-residue signal sequence, cleavage of which would give rise to a mature protein with a molecular weight of 16 099 Da. Ecotin does not contain any consensus reactive site sequences of known serine protease inhibitor families, suggesting that Ecotin is a novel inhibitor

    Reproduction of Gastric Cancer Prognostic Score by real-time quantitative polymerase chain reaction assay in an independent cohort

    Get PDF
    Purpose Addition of molecular markers to the American Joint Committee on Cancer (AJCC) staging system would allow further refinements in predicting recurrence and help individualize treatment decisions. We aimed to validate the Gastric Cancer Prognostic Score (GCPS) in an independent cohort using an easy and cost effective quantitative real-time polymerase chain reaction (qRT-PCR) assay. Methods We performed qRT-PCR using 48 samples from our previous study and expanded to 128 independent patients. The GCPS was recalculated using Cox regression estimates and the performance of cutoff values for GCPS was reassessed. Results The qRT-PCR results showed a similar pattern to nanostring data by scale function data comparison. Using a new cutoff value, GCPS stratified 95 stage IB–III patients who received adjuvant chemotherapy into 74 high-risk patients and 21 low-risk patients with significantly different recurrence-free survival (P< 0.0001). The survival difference remained significant (P= 0.028) in 27 patients who did not receive adjuvant chemotherapy. Among stage I and II patients who were treated with surgery only, one AJCC stage IIA patient was defined as low-risk and showed long-term survival. Nine of 12 high-risk patients showed recurrence less than 67 months after operation. Conclusion We reproduced the GCPS with an easily applicable qRT-PCR assay and successfully predicted recurrence in patients with gastric cancer

    YH29407 with anti-PD-1 ameliorates anti-tumor effects via increased T cell functionality and antigen presenting machinery in the tumor microenvironment

    Get PDF
    Among cancer cells, indoleamine 2, 3-dioxygenase1 (IDO1) activity has been implicated in improving the proliferation and growth of cancer cells and suppressing immune cell activity. IDO1 is also responsible for the catabolism of tryptophan to kynurenine. Depletion of tryptophan and an increase in kynurenine exert important immunosuppressive functions by activating regulatory T cells and suppressing CD8+ T and natural killer (NK) cells. In this study, we compared the anti-tumor effects of YH29407, the best-in-class IDO1 inhibitor with improved pharmacodynamics and pharmacokinetics, with first and second-generation IDO1 inhibitors (epacadostat and BMS-986205, respectively). YH29407 treatment alone and anti-PD-1 (aPD-1) combination treatment induced significant tumor suppression compared with competing drugs. In particular, combination treatment showed the best anti-tumor effects, with most tumors reduced and complete responses. Our observations suggest that improved anti-tumor effects were caused by an increase in T cell infiltration and activity after YH29407 treatment. Notably, an immune depletion assay confirmed that YH29407 is closely related to CD8+ T cells. RNA-seq results showed that treatment with YH29407 increased the expression of genes involved in T cell function and antigen presentation in tumors expressing ZAP70, LCK, NFATC2, B2M, and MYD88 genes. Our results suggest that an IDO1 inhibitor, YH29407, has enhanced PK/PD compared to previous IDO1 inhibitors by causing a change in the population of CD8+ T cells including infiltrating T cells into the tumor. Ultimately, YH29407 overcame the limitations of the competing drugs and displayed potential as an immunotherapy strategy in combination with aPD-1

    Development of a novel real-time RT-PCR method using peptide nucleic acid (PNA) probes for detecting and genotyping of viral haemorrhagic septicaemia virus (VHSV)

    No full text
    Viral haemorrhagic septicaemia (VHS) is one of the most serious viral diseases in salmonid and olive flounder farms. The causative agent of VHS is the VHS virus (VHSV), which has been classified into four genotypes (I–IV), based on sequence analysis of the genes encoding for nucleoprotein, glycoprotein, and non-structural viral protein. Among the various diagnostic methods, real-time reverse transcription PCR method based on TaqMan-probe (RT-qPCR) is a stable, rapid, specific, and highly sensitive method for viral gene detection. However, the currently accepted diagnostic method based on RT-qPCR can only detect viral presence and load, and does not provide information about viral genotype. Peptide nucleic acids (PNAs) are artificially synthesized DNA analogues with an uncharged peptide backbone. PNA probes can effectively detect a target gene by amplification and a specific melting temperature signal. It was reported that PNA probes can effectively distinguish between mismatched sequences based on their different melting temperatures in amplified PCR products. The present study reports a novel real-time RT-PCR method for simultaneous detection and genotyping of VHSV using PNA probes. The newly-developed method showed a sensitivity similar to that of the infectious titre by fish cell cultures inoculated with the virus, except for genotype IVa, where viral inoculation in cell culture showed a 10-fold higher sensitivity than the novel method. The melting point analysis to distinguish the four genotypes was performed on 80 VHSV isolates representing all known genotypes, showing that this novel real-time RT-PCR can distinguish between all VHSV genotypes without the need of further sequencing

    Evaluation of the Antimicrobial Effect of Graphene Oxide Fiber on Fish Bacteria for Application in Aquaculture Systems

    No full text
    The growing importance of the domestic aquaculture industry has led not only to its continuous development and expansion but also to an increase in the production of wastewater containing pathogenic microorganisms and antibiotic-resistant bacteria. As the existing water purification facilities have a high initial cost of construction, operation, and maintenance, it is necessary to develop an economical solution. Graphene oxide (GO) is a carbon-based nanomaterial that is easy to manufacture, inexpensive and has excellent antimicrobial properties. In this study, the antimicrobial effect of GO polyester fibers on seven species of fish pathogenic bacteria was analyzed to evaluate their effectiveness in water treatment systems and related products. As a result of incubating GO polyester fibers with seven types of fish pathogenic bacteria for 1, 6, and 12 h, there was no antimicrobial effect in Vibrio harveyi, V. scopthalmi, and Edwardsiella tarda. In contrast, GO fibers showed antimicrobial effects of more than 99% against A. hydrophila, S. parauberis, S. iniae, and P. piscicola, suggesting the potential use of GO fibers in water treatment systems

    Callus Derived from Petals of the <i>Rosa hybrida</i> Breeding Line 15R-12-2 as New Material Useful for Fragrance Production

    No full text
    Rose (Rosa hybrida) is a major flower crop worldwide and has long been loved for its variety of colors and scents. Roses are mainly used for gardening or cutting flowers and are also used as raw materials for perfumes, cosmetics, and food. Essential oils, which are extracted from the flowers of plants, including roses, have various scents, and the essential oil market has been growing steadily owing to the growing awareness of the benefits of natural and organic products. Therefore, it is necessary to develop a system that stably supplies raw materials with uniform ingredients in line with the continuous increase in demand. In this study, conditions for the efficient induction of callus were established from the petals of the rose breeding line 15R-12-2, which has a strong scent developed by the National Institute of Horticultural and Herbal Science, Rural Development Administration. The highest callus induction rate (65%) was observed when the petals of the fully open flower (FOF) were placed on the SH11DP medium so that the abaxial surface was in contact with the medium. In addition, the VOCs contained in the petals of 15R-12-2 and the petal-derived callus were analyzed by HS-SPME-GC-MS. Thirty components, including esters and alcohols, were detected in the petal-derived callus. Among them, 2-ethylhexan-1-ol, which showed 59.01% relative content when extracted with hexane as a solvent, was the same component as detected in petals. Therefore, petal-derived callus is expected to be of high industrial value and can be suggested as an alternative pathway to obtaining VOCs
    • …
    corecore