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Abstract 

Background: Aside from its importance in reproduction, estrogen (E2) is known to regulate the proliferation and 
differentiation of hematopoietic stem cells in rodents. However, the regulatory role of E2 in human hematopoietic 
system has not been investigated. The purpose of this study is to investigate the effect of E2 on hematopoietic dif‑
ferentiation using human pluripotent stem cells (hPSCs).

Results: E2 improved hematopoietic differentiation of hPSCs via estrogen receptor alpha (ER‑α)‑dependent pathway. 
During hematopoietic differentiation of hPSCs, ER‑α is persistently maintained and hematopoietic phenotypes (CD34 
and CD45) were exclusively detected in ER‑α positive cells. Interestingly, continuous E2 signaling is required to pro‑
mote hematopoietic output from hPSCs. Supplementation of E2 or an ER‑α selective agonist significantly increased 
the number of hemangioblasts and hematopoietic progenitors, and subsequent erythropoiesis, whereas ER‑β selec‑
tive agonist did not. Furthermore, ICI 182,780 (ER antagonist) completely abrogated the E2‑induced hematopoietic 
augmentation. Not only from hPSCs but also from human umbilical cord bloods, does E2 signaling potentiate hemat‑
opoietic development, suggesting universal function of E2 on hematopoiesis.

Conclusions: Our study identifies E2 as positive regulator of human hematopoiesis and suggests that endocrine fac‑
tors such as E2 influence the behavior of hematopoietic stem cells in various physiological conditions.
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Background
Estrogen (E2), a primary steroid hormone, plays a cru-
cial role in the development, maturation, and functions 
of male and female reproductive organs [1, 2]. E2 acts on 
target cells by binding nuclear receptors, of which two 
nuclear receptors have been identified, estrogen receptor 
(ER)-α and ER-β [3]. The E2-ER complex binds to specific 
sequences of DNA and then modulates transcription of 

its target genes, called genomic action of E2. E2 can also 
mediate rapid signaling independent of genomic path-
way. This rapid signaling can be mediated by various 
intracellular second messengers, which confer to the abil-
ity of rapid transmission of E2 signaling in target cells [4].

Aside from its importance in reproduction, a grow-
ing body of evidence indicates that E2 is involved in 
regulating the proliferation and differentiation of multi-
potent and pluripotent stem cells [5–7]. A recent study 
unveiled an unexpected function of E2 in promoting 
cycling of hematopoietic stem cells (HSCs) and multi-
potent progenitors (MPPs) and their differentiation 
into megakaryocyte-erythroid progenitors (MEPs) [8]. 
While the administration of pharmacologic agonists and 
antagonists of ER seems to modulate HSC proliferation 
in  vivo, to date, comparatively less is known about the 
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regulatory role of E2 in early hematopoietic development 
in humans. Furthermore, as expected, it is very difficult 
to understand such coordinated events of E2 on human 
hematopoiesis in vivo context. Human pluripotent stem 
cells (hPSCs) have provided promising opportunities 
to understand the fundamental processes of human cell 
fate decisions in the context of tissue regeneration and 
human diseases [9]. The process of hematopoietic devel-
opment in vivo is tightly controlled and regulated by the 
distinct intrinsic and extrinsic signaling pathways and 
in  vitro hematopoiesis of hPSCs mimicks these sign-
aling cascades active during embryonic development 
[10–12]. Consistent with the importance of Notch, Wnt 
and Hedgehog (Hh) signalings during early embryonic 
hematopoiesis, recent evidence has shown that activation 
of these signaling pathways is crucial for both the emer-
gence of hemogenic cells and the subsequent hematopoi-
etic specification from hPSCs [10, 13]. Thus, we utilized 
hPSCs as a robust in vitro system to investigate the func-
tion of E2 during hematopoietic cell fate decision.

In this study, we identify a unique role of E2 in the reg-
ulation of hematopoiesis from hPSCs. E2-ER-α signaling 
enriches hemangioblasts, hematopoietic progenitors and 
subsequent erythrocytes during hematopoietic differen-
tiation programs in humans.

Results
ER‑alpha is persistently maintained during hematopoietic 
differentiation
To understand potential roles of E2 during the devel-
opment of human hematopoietic systems, we first 
examined the expression of ER in hPSCs. Previously, 
we demonstrated that steroid receptors, such as ER-α, 
ER-β, glucocorticoid receptor, and progesterone recep-
tor, are expressed in undifferentiated hPSCs and EBs 
[6]. Consistent with the previous report, ER-α is highly 
expressed in undifferentiated colony of hPSCs (Fig.  1a). 
Interestingly, ER-α was detected even in spontaneously 
differentiated OCT4 negative cells as well (Fig.  1b). To 
demonstrate the role of E2 signaling in hematopoietic 
differentiation, we used a hEB differentiation model 
from hPSCs. As previously established [14], hierarchi-
cal stages of hematopoiesis can be characterized into 
two phases of hEB development, emergence of bipoten-
tial hemogenic precursors (CD45negPFV) and develop-
ment of hematopoietic progenitors (CD34+CD45+) and 
mature blood (CD34−CD45+) cells (Fig. 1c). Whereas the 
number of ER-α positive cells was progressively down-
regulated during in  vitro hematopoietic development of 
hPSCs (Additional file 1: Figure S1), expression of ER-α is 
highly maintained in cells within hematopoietic lineage. 
Hemogenic precursors (CD45negPFV) and hematopoietic 
cells (CD34+CD45+ and CD34−CD45+) were exclusively 

included in ER-α positive cells (Fig. 1d; Additional file 2: 
Table S1). These data collectively suggest that E2 may 
have a novel function on the regulation of hematopoietic 
lineage specification in humans.

Continuous E2 signaling is required to promote 
hematopoietic output from hPSCs
To examine functional role of E2 during hematopoiesis, 
E2 at various concentrations was added to culture media 
during hematopoietic differentiation of hEBs in the pres-
ence or absence of optimized human growth factors 
(hGFs) [15]. E2 at 10−8 M and 10−7 M provided syner-
gistic effects with hGFs on hematopoietic differentiation 
(Additional file 3: Figure S2). E2 at 10−8 M concentration 
was used for following experiments since it is physiologi-
cally more relevant [16, 17]. As suggested by our previous 
report [15], hGFs exhibited a dramatic increase of hemat-
opoietic progenitors (CD34+CD45+) and mature blood 
(CD34−CD45+) cells. In this context, E2 further pro-
moted output of hematopoietic progenitors and matured 
blood cells approximately twofold more (Fig.  2a). How-
ever, E2 treatment without hGFs did not have any effects 
on it, suggesting cooperative actions of E2 with hGFs to 
improve hematopoietic differentiation of hPSCs. We then 
asked if E2 differentially regulates hematopoietic differ-
entiation in male (DF-699T.B) and female (IISH3i-CB6) 
hPSCs. There were no significant differences in the fre-
quency of hematopoietic progenitors and mature blood 
cells between male and female hPSCs (Additional file 4: 
Figure S3A, B). To validate that enhanced blood differ-
entiation by E2 is mediated via nuclear ERs, ICI 182,780, 
an ER antagonist, was added during hematopoietic dif-
ferentiation of hPSCs. ICI 182,780 significantly interfered 
with actions of E2 on hematopoietic development in both 
primitive and matured blood cells (Fig. 2b). Furthermore, 
suppression of ER-α expression in undifferentiated hPSC 
cultures using siRNA reduced the output of hematopoi-
etic differentiation (Additional file  4: Figure S3C, D). 
These results strongly indicate that E2-induced enrich-
ment of hematopoietic cells is ER dependent during 
hematopoiesis of hPSCs irrespective of gender of hPSCs.

Hematopoietic differentiation program can be divided 
into two phases, hemogenic specification (days 0–7) and 
then hematopoietic commitment (days 7–15). To inves-
tigate temporal effects of E2 signaling during hemat-
opoietic differentiation, hEBs were treated with E2 for 
hemogenic specification (days 0–7) phase, hematopoi-
etic commitment (days 7–15) phase or both phases (days 
0–15). In cases that E2 was temporally provided, both 
primitive and matured hematopoietic output was sig-
nificantly reduced as compared with those of E2 treat-
ment for both phases. These results strongly suggest 
that continuous activation of E2 signaling is required 
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Fig. 1 Temporal expression of ER‑α and hematopoietic markers during hiPSC‑derived hematopoietic development. a Immunocytochemistry 
staining for ER‑α (green) costained with OCT4 (red) in feeder‑free hiPSC cultures. Nuclei were counterstained with DAPI (blue). Scale bar 100 μm. b 
Frequencies of ER‑α and OCT4 in undifferentiated hiPSC cultures by flow cytometry. c Schematic diagram of hematopoietic development from 
hPSC: hemogenic specification phase (phase I) and hematopoietic commitment phase (phase II). d Temporal expression patterns of ER‑α and 
hematopoietic markers during hiPSC‑derived hematopoietic development



Page 4 of 9Kim et al. Cell Biosci  (2016) 6:50 

for E2-dependent increase of hematopoietic differentia-
tion (Fig. 2c). We next examined whether E2 could pro-
mote functional multi-lineage capacity of hematopoietic 
progenitors as well using the in  vitro CFU assay. While 
supplementation of hGFs significantly increased total 
number of CFUs produced by progenitor cells, E2 did not 
show any synergistic effects on this event (Fig. 2d). Fur-
thermore, the distribution of CFU types was not affected 
by any treatments (Fig. 2e), suggesting that E2 signaling 
does not have critical influence on the functional capac-
ity of hematopoietic progenitors. Taken together, these 
results demonstrated that E2-ER signaling pathway facili-
tates hPSC-derived hematopoietic programming, but not 
multi-lineage potential of hematopoietic progenitors.

E2 significantly increases the number of hemangioblasts 
and erythroid colonies via ER‑α‑dependent pathway
To understand whether enhanced hematopoietic dif-
ferentiation by E2 is specified from the hemogenic cells, 
retaining both hematopoietic and endothelial poten-
tial [18, 19], we assessed effects of E2 on the ability of 
hPSCs to generate developmentally intermediate heman-
gioblasts. As shown in Fig.  3a, hPSCs could produce 

hemangioblasts that further differentiated into both 
endothelial and hematopoietic lineages. Interestingly, E2 
produced larger number of hemangioblast colonies from 
hPSCs (Fig. 3b), suggesting that E2 signaling is involved 
in fate decision process during early hematopoiesis. Fur-
thermore, in case that same number of hemangioblast 
cells is provided, E2 generated significantly more CFUs 
from them (Fig. 3c), suggesting that ER signaling poten-
tiates not only hemogenic specification, but also subse-
quent hematopoietic lineage development of hPSCs. So 
far, two nuclear receptors have been identified, ER-α 
and ER-β in mediating E2 signal pathway (Hall et  al. 
2001). To further investigate which receptor works for 
E2-mediated hematopoietic development, PPT (100 nM) 
and DPN (100 nM), selective agonists of ER-α and ER-β, 
were used to produce hemangioblasts, respectively. The 
activation of ER-α with PPT, but not ER-β with DPN, 
significantly enhanced the generation of hemangioblasts 
(Fig. 3b) and hematopoietic commitment (Fig. 3c), simi-
lar extents with E2, suggesting that a novel function of E2 
during hematopoiesis of hPSCs is exclusively dependent 
on ER-α. Given the recent evidence that E2 preferentially 
give rise to CFU-E from hematopoietic progenitors, we 

Fig. 2 Effect of E2 in hiPSC‑derived hematopoiesis. a, b Effects of E2 on the production efficiency of hematopoietic progenitors (CD34+CD45+) 
and mature hematopoietic cells (CD34−CD45+) from hiPSC‑derived EBs at day 15. EBs were cultured in hematopoietic induction medium alone 
or supplemented with different combination of E2, hGFs and ICI 182,780. c Assessment of hematopoietic output by restricting the period of E2 
exposure during EB differentiation to phase I (I) and phase II (II) alone compared to differentiation during both phase I and II (I+II). d Assessment of 
hematopoietic progenitor capacity of EBs differentiated under various treatments for 15 days. e Distribution of CFU types (CFU‑E, erythroid; CFU‑M, 
macrophage; and CFU‑G, granulocytes). All results are mean ± SD. *p < 0.05, **p < 0.01
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further examined erythrocyte generation by applying an 
optimized protocol to generate functional erythrocytes 
from human embryonic stem cells (Kennedy et al. 2007). 
The expression of high levels of Glycophorin A (CD235a) 
with the lack of CD45 (CD235a+CD45−) and co-expres-
sion of CD235a and CD71 (CD235a+CD71+) on their 
surface confirmed erythrocytic features of differenti-
ated cells (Fig.  3d). E2 notably increased the frequency 
of erythrocyte markers, hence it suggests that activation 
of E2 signaling pathway enhances capacity of erythro-
poietic differentiation capacity from hPSCs (Fig.  3e). 
Taken together, these results demonstrate that facilitated 
hematopoietic differentiation capacity of E2 is specified 
at the early hemangioblastic development from the pluri-
potent state.

E2 promotes the expansion of hematopoietic progenitors 
derived from hUCBs
Since we newly identified E2-ER-α signaling enable to 
potentiate hematopoietic development of hPSCs, next 
we examined whether E2 has similar function in hemat-
opoietic progenitors (CD34+) from human umbilical 

cord bloods (hUCBs). Fraction of hematopoietic pro-
genitors was purified from hUCBs and cultured in the 
presence of E2. First, we examined whether E2 can 
promote proliferation of hematopoietic progenitors 
by counting cell numbers for 10  days culture. E2 sig-
nificantly increased the number of blood cells (approxi-
mately twofold increase at day 10) (Fig.  4a). Although 
no significant differences in cell number are detected 
at day 5, fraction of ER positive cells is highly main-
tained in the presence of E2 (Fig.  4b). Taken together, 
these results demonstrate that E2 augmented the prolif-
eration of hematopoietic progenitors by maintaining ER 
positive cells. To further understand E2 actions on the 
multi-lineage potential of hematopoietic progenitors, 
we performed CFU assays from cells cultured for 5 or 
10 days in the presence of E2. E2 significantly enhanced 
the CFU output even at 5 days culture, suggesting that 
E2 signaling promotes functional capacity of hemat-
opoietic progenitors in addition to proliferation 
(Fig. 4c). Increased number of diverse types of CFUs at 
day 10 further suggested that most hematopoietic line-
ages are influenced by E2 signaling.

Fig. 3 Increased number of hemangioblasts and erythroid colony during iPSC hematopoiesis is dependent on ER‑α signaling. a Representative 
image of a hemangioblast derived from hiPSCs (i) Multiple types of hematopoietic CFU (ii) and endothelial cells (iii, stained with CD144) derived 
from hiPSC‑hemangioblasts. b, c Effects of E2, DPN and PPT on the generation of hemangioblasts from hiPSCs and their hematopoietic progenitor 
capacity. d, e Effects of E2 on the output of CFU‑E from hiPSC‑derived hemangioblasts were analyzed by flow cytometry. All results are mean ± SD. 
*p < 0.05, **p < 0.01
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Discussion
HSCs is maintained by various intrinsic factors and 
environmental cues in  vivo or in  vitro [10–12]. There-
fore, understanding molecular mechanisms by which 
these regulatory factors maintain HSCs is required to 
instruct successful proliferation and maintenance of 
HSCs for clinical applications. Our current study iden-
tifies a critical novel function of E2 during early human 
hematopoiesis and the expansion of hematopoietic pro-
genitors. Although this report is the first to reveal a role 
for E2 signaling in early human hematopoietic specifica-
tion, similar mechanisms have been shown to regulate 
hematopoiesis in other species. Significant reduction 
of HSCs in E2-deficiency rat by ovariectomy has been 
reported and this hematopoietic dysfunction in the bone 
marrow (BM) may be due to altered levels of hGFs such 
as SCF and IL-3 [20]. In mice, E2 increases numbers of 
functional short-term HSCs (ST-HSCs) with reconstitu-
tive potential in the vascular niche by enhancing S-phase 
entry [21]. A recent study demonstrated the differential 
expression of ER-α and ER-β between long-term (LT) 
repopulating HSCs (LT-HSCs) and committed progeni-
tors in the mouse BM [22]. It also showed that ER-α defi-
ciency led to the reduction of LT- and SH-HSCs, but did 
not affect the number of MPPs, suggesting distinct role of 

E2 pathway in subpopulations of mouse HSCs. In addi-
tion, E2-ER-α signaling yielded elevated HSC division and 
erythropoiesis especially in female mice [8]. Although 
these results in other species provided practical implica-
tions for E2 in human HSCs, it has not been achieved to 
date partly due to the lack of appropriate human mod-
els. In this aspect, we provide a model to investigate early 
human hematopoiesis in  vitro with hPSCs and demon-
strate positive effect of E2 on this developmental process.

In vitro differentiation of hPSCs provided valuable 
surrogate for understanding the cellular and molecular 
mechanisms that govern developmental process of the 
human in vivo. Based on our present study using hPSCs, 
we propose a beneficial role of E2 signaling in promot-
ing intrinsic hematopoietic potential of hPSCs and fur-
ther demonstrated that the activation of ER-α enhances 
generation of hemangioblasts and erythrocytes. Nakada 
et  al. also showed that activation of ER signaling with 
PPT but not with DPN significantly increased HSC divi-
sion as well as erythropoiesis in the BM and spleen [8]. 
These data indicate that E2 effects on HSCs and eryth-
ropoiesis are mediated primarily via ER-α and function-
ally conserved between mice and humans. While this 
study clearly demonstrates that continuous activation 
of ER signaling improves hematopoietic differentiation 
in humans, downstream signaling pathways that regu-
late these processes still remain elusive. Recently, it was 
reported that EGR1, a member of EGR family of tran-
scription factors, controls both the proliferation and 
mobilization of HSCs in mouse BM [23]. Several groups 
including us recently showed that E2-ER signaling path-
way transiently induces EGR1 to orchestrate a second 
wave of gene expression in the uterus [24–26]. We found 
that c-KIT, a transmembrane receptor tyrosine kinase 
for stem cell factor, is one of EGR1 direct target genes 
whose transcription is directly regulated by EGR1 in 
the uterus (data not shown). It is interesting to note that 
c-KIT is an important cell surface marker sued to iden-
tify hematopoietic stem/progenitor cells in the BM and 
c-KIT  +  hPSCs are lineage-biased toward hematopoi-
etic cell fate [27, 28]. In this regard, it is possible that E2 
induces immediate early response genes such as EGR1 to 
produce local factors critical for hematopoiesis in human 
BM and hematopoietic development of hPSCs. Further 
studies are warranted to characterize underlying molecu-
lar mechanisms by which E2 controls hematopoietic dif-
ferentiation in humans.

Consistent with increased hematopoiesis in hPSCs, 
E2 pathway appeared to potentiate functional activity of 
hematopoietic progenitors of hUCBs. The small number 
of hematopoietic stem/progenitor cells in UCBs limits 
their widespread use for transplantation and gene therapy 
[29, 30]. Thus, efficient and continuous ex vivo expansion 

Fig. 4 Effect of E2 in the proliferation and differentiation of hemat‑
opoietic progenitors derived from hUCB. a Hematopoietic progeni‑
tors (CD34+) were harvested from hUCB using MACS and exposed 
to E2 for 5 and 10 days. Effects of E2 on the proliferation of hUCB‑
derived hematopoietic progenitors. b Frequencies of ER‑α were 
measured by flow cytometry. c Assessment of the hematopoietic 
multi‑lineage potential of hUCB‑derived hematopoietic progenitors 
treated with E2 for 5 and 10 days. All results are mean ± SD. *p < 0.05, 
**p < 0.01
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of purified hematopoietic stem/progenitors without loss 
of repopulation capacity has become a priority to meet 
the clinical requirements for allogeneic transplantation 
[31]. In this respect, our data suggest that expansion of 
hematopoietic progenitors with multi-lineage potential 
of UCBs by E2 signaling enables UCBs to become a pri-
oritized source for future clinical applications.

Conclusions
The present study demonstrates that E2 improved hemat-
opoietic differentiation of hPSCs via ER-α-dependent 
pathway. Taken together, the present finding expands our 
understanding of actions of endocrine factors on human 
hematopoietic development, which may provide new 
possible potential candidate for HSC transplantation. It is 
definitely critical to evaluate in  vivo repopulation capa-
bility of hematopoietic stem/progenitors expanded in the 
presence of E2 for clinical cell transplantation therapies.

Methods
Maintenance of hiPSCs
All experiments were carried out with the hiPSC lines 
DF-699T.B (WiCell) and IISH3i-CB6 (WiCell). Undif-
ferentiated hiPSC lines were maintained on Matrigel 
(BD Biosciences)-coated six-well tissue culture plates in 
mTeSR1 serum-free medium (STEMCELL Technolo-
gies). The cells were passaged at a 1:4 split ratio every 
5  days by mechanical dissociation and the medium was 
replaced daily.

Hematopoietic differentiation and knockdown of ER‑α 
transcript using siRNA
For hematopoietic differentiation of hiPSCs through 
embryoid body (EB) formation, confluent undifferenti-
ated hiPSCs were scraped off and transferred to Ultra-
Low attachment plate (Corning). The hiPSC clumps 
were incubated overnight in EB differentiation medium 
[Knock-out-Dulbecco’s modified Eagle’s medium 
(KO-DMEM) supplemented with 20  % fetal bovine 
serum (FBS, Hyclone), 1  mM  l-glutamine, 0.1  mM 
β-mercaptoethanol, and 1 % non-essential amino acids]. 
At the next day, the medium was changed with the same 
EB differentiation medium supplemented with hemat-
opoietic growth factors (hGFs): 25 ng/ml bone morpho-
genetic protein-4 (BMP-4), 300  ng/ml stem cell factor 
(SCF), 10 ng/ml interleukin-3 (IL-3), 10 ng/ml IL-6, 50 ng/
ml granulocyte colony stimulating factor (G-CSF), and 
300  ng/ml Flt-3L. Thereafter, the medium was changed 
every 3  days. All hGFs were purchased from R&D sys-
tems. To investigate the effect of E2 (Sigma) on hiPSC-
derived hematopoiesis, we blocked ER signals using ER 
antagonist 7α,β17-[9-[(4,4,5,5,5-Pentafluoropentyl)sulfi-
nyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI 182,780) at  

100  ng/ml (Tocris) in EB differentiation medium. 
Undifferentiated hiPSCs were transfected with ON-
TARGETplusSMARTpool siRNA targeting ER-α 
(L-003401-00-0005, Dharmacon) for 24  h according to 
the manufacturer’s instructions. Non-targeting siRNA 
(D-001910-10-50, Dharmacon) was used as a negative 
control.

Flow cytometry analysis
EBs were dissociated with Collagenase IV in 37  °C and 
5  % CO2 for 2  h. Single cell suspension from dissoci-
ated EBs was resuspended in 3 % FBS-PBS. The cell were 
passed through a 70  μm cell strainer and incubated at 
4 °C for 1 h with the following fluorochrome-conjugated 
mouse anti-human antibodies: CD31-PE, CD34-FITC, 
CD45-APC, CD235a-PE, and CD71-APC (all BD Bio-
sciences) or their corresponding isotype controls. Anti-
OCT4 (BD Biosciences) and anti-ER-α (Santa Cruz) 
staining was identified using Alexa 488- and 647-conju-
gated goat anti-mouse IgG (Invitrogen). After washing 
with 3  % FBS-PBS, the cells were stained with 7-amino 
actinomycin to exclude dead cells. Flow analysis was 
performed on a FACSCanto II running BD FACSDiva™ 
(BD Biosciences) and acquired data were analyzed using 
FlowJo version 10 (Tree Star, Inc.).

Colony forming unit (CFU) assay
CFU assay was performed as previously described [32]. 
Briefly, 10,000 cells dissociated from EBs were plated into 
methylcellulose H4230 (STEMCELL Technologies) sup-
plemented with 50 ng/ml SCF, 10 ng/ml GM-CSF, 10 ng/
ml IL-3, and 3 units/ml erythropoietin. Hematopoietic 
cell clusters were counted on the basis of morphology 
after incubation for 10–14 days.

Generation of hemangioblast and measurement of colony 
forming capability
Hemangioblasts were generated as previously described 
[19]. Briefly, 2 ×  105 hiPSCs were plated on Ultra-Low 
attachment plate in Stemline II medium (Sigma) con-
taining BMP-4 (50  ng/ml) and VEGF (50  ng/ml) and 
incubated them for 48  h. Then, the half of the medium 
was replaced with the medium supplemented with 
BMP-4 (50  ng/ml), VEGF (50  ng/ml), SCF (20  ng/ml), 
thrombopoietin (20 ng/ml), and Flt-3L (20 ng/ml). After 
3.5 days, the EBs were dissociated with 0.05 % trypsin–
EDTA for 5 min and filtered through a 40 μm cell strainer. 
To expand hemangioblasts, the cells were resuspended in 
blast growth medium alone or supplementation of E2, 
propyl pyrazole triol (PPT, 100 nM) and diarylpropioni-
trile (DPN, 100  nM) and then incubated for 4–6  days. 
After 4–6  days, grape-like blast colonies were observed 
and counted in each culture condition. In order to assess 
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colony-forming capability of blasts grown in each condi-
tion, blasts were resuspended in Stemline II medium and 
mixed with methylcellulose H4436 (STEMCELL Tech-
nologies). Then, cells were plated into a 12-well non-
tissue culture plate. Hematopoietic cell clusters were 
counted on the basis of morphology after incubation for 
15 days.

Harvest of hematopoietic progenitors from human 
umbilical cord bloods (hUCBs)
Human UCB samples were obtained from normal full-
term deliveries by Caesarian section at the Kangwon 
National University Hospital with the Kangwon National 
University Hospital Institutional Review Board (KNUH-
IRB)-approved (IRB approved number: KNUH-2012-11-
003-008) written consent from the patients. Mononuclear 
cells (MNCs) were isolated using Ficoll-Paque Plue 
(Pharmacia Biotech) and then resuspended in 1 % FBS-
PBS. Hematopoietic progenitors expressing CD34+ anti-
gen were enriched from MNCs by negative selection 
using StemSep isolation system (STEMCELL Technolo-
gies) according to the manufacturer’s instructions.

Immunofluorescence staining
For immunofluorescence staining, undifferentiated hiP-
SCs and hemangioblast were fixed with 4  % paraform-
aldehyde for 10 min and then permeabilized with 0.5 % 
saponin in PBS. The cells were blocked with 10  % nor-
mal goat serum (Sigma) for 30  min at room tempera-
ture. The cells were then incubated with the following 
primary anti-human antibodies overnight at 4 °C: OCT4 
(BD Biosciences), ER-α (Santa Cruz), and CD144 (BD 
Biosciences). The cells were washed twice with PBS and 
incubated with fluorochrome-conjugated secondary 
antibodies for 1 h at room temperature. The nuclei were 
counterstained with DAPI (Sigma) for 5 min. Fluorescent 
images were visualized with a fluorescence microscope 
(IX-71, Olympus).

Data analysis
Values for all measurements are presented as mean ± SD. 
Comparisons for all experiments were performed with 
Student’s t test. Significance levels were set at p < 0.05.

Additional files

Additional file 1: Figure S1. Temporal change of ER‑alpha during hiPSC‑
derived hematopoietic development.

Additional file 2: Table S1. Temporal changes (%) of ER‑α and hemat‑
opoietic phenotypes during hiPSC‑derived hematopoietic differentiation.

Additional file 3: Figure S2. Optimization of E2 concentration for 
hematopoiesis.

Additional file 4: Figure S3. siRNA‑based Knockout of ER‑alpha pro‑
motes hematopoietic differentiation.

Authors’ contributions
HRK, JHL, HRH, SRY, KSH, ETH, and WSP performed the experiments, designed 
the research and helped with data analysis. HS and SHH designed the research 
and wrote the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Biomedical Science, College of Life Science, CHA University, 
689 Sampyeong‑dong, Bundang‑gu, Seongnam 463‑400, Republic of Korea. 
2 Stem Cell and Cancer Research Institute, McMaster University, Hamilton, 
ON L8N 3Z5, Canada. 3 Department of Internal Medicine, School of Medicine, 
Kangwon National University, Kangwondaehakgil 1, Chuncheon, Gangwon 
200‑701, Republic of Korea. 4 Department of Thoracic and Cardiovascular Sur‑
gery, School of Medicine, Kangwon National University, Chuncheon, Republic 
of Korea. 5 Department of Molecular and Cellular Biochemistry, School 
of Medicine, Kangwon National University, Chuncheon, Republic of Korea. 
6 Department of Physiology, School of Medicine, Kangwon National University, 
Chuncheon, Republic of Korea. 7 Department of Medical Environmental Biol‑
ogy and Tropical Medicine, School of Medicine, Kangwon National University, 
Chuncheon, Republic of Korea. 8 Stem Cell Institute, Kangwon National 
University, Chuncheon, Republic of Korea. 

Acknowledgements
This research was supported by the Basic Science Research Program through 
the National Research Foundation of Korea (NRF) funded by the Ministry of 
Education, Science and Technology (2013K1A3A1A20046548), the Ministry of 
Science, ICT & Future Planning (2015R1A4A1038666) and 2014 Research Grant 
from Kangwon National University (120141491).

Competing interests
The authors declare that they have no competing interests.

Received: 7 February 2016   Accepted: 7 June 2016

References
 1. Findlay JK, et al. Estrogen signaling in the regulation of female reproduc‑

tive functions. Handb Exp Pharmacol. 2010;198:29–35.
 2. Hess RA. Estrogen in the adult male reproductive tract: a review. Reprod 

Biol Endocrinol. 2003;1:52.
 3. Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol 

and estrogen receptor signaling. J Biol Chem. 2001;276(40):36869–72.
 4. Nilsson S, Gustafsson JA. Estrogen receptor action. Crit Rev Eukaryot 

Gene Expr. 2002;12(4):237–57.
 5. Heo HR, et al. Hormonal regulation of hematopoietic stem cells and their 

niche: a focus on estrogen. Int J Stem Cells. 2015;8(1):18–23.
 6. Hong SH, et al. Expression of estrogen receptor‑alpha and ‑beta, 

glucocorticoid receptor, and progesterone receptor genes in human 
embryonic stem cells and embryoid bodies. Mol Cells. 2004;18(3):320–5.

 7. Ray R, et al. Sex steroids and stem cell function. Mol Med. 
2008;14(7–8):493–501.

 8. Nakada D, et al. Oestrogen increases haematopoietic stem‑cell self‑
renewal in females and during pregnancy. Nature. 2014;505(7484):555–8.

 9. Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the 
first therapies to the clinic. Nat Rev Drug Discov. 2015;14(10):681–92.

 10. Cerdan C, Bhatia M. Novel roles for Notch, Wnt and Hedgehog in 
hematopoesis derived from human pluripotent stem cells. Int J Dev Biol. 
2010;54(6–7):955–63.

 11. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biol‑
ogy. Cell. 2008;132(4):631–44.

 12. Hong SH, Kim KS, Oh IH. Concise review: exploring miRNAs–toward a 
better understanding of hematopoiesis. Stem Cells. 2015;33(1):1–7.

 13. Lee JB, et al. Notch‑HES1 signaling axis controls hemato‑endothelial 
fate decisions of human embryonic and induced pluripotent stem cells. 
Blood. 2013;122(7):1162–73.

 14. Vijayaragavan K, et al. Noncanonical Wnt signaling orchestrates early 
developmental events toward hematopoietic cell fate from human 
embryonic stem cells. Cell Stem Cell. 2009;4(3):248–62.

http://dx.doi.org/10.1186/s13578-016-0111-9
http://dx.doi.org/10.1186/s13578-016-0111-9
http://dx.doi.org/10.1186/s13578-016-0111-9
http://dx.doi.org/10.1186/s13578-016-0111-9


Page 9 of 9Kim et al. Cell Biosci  (2016) 6:50 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 15. Hong SH, et al. ID1 and ID3 represent conserved negative regulators of 
human embryonic and induced pluripotent stem cell hematopoiesis. J 
Cell Sci. 2011;124(Pt 9):1445–52.

 16. Chalfant M, Bernd KK. 17beta‑Estradiol alters rat type‑II alveolar cell recov‑
ery from high levels of ozone. PLoS ONE. 2014;9(3):e90530.

 17. Chakrabarti S, Davidge ST. High glucose‑induced oxidative stress 
alters estrogen effects on ERalpha and ERbeta in human endothe‑
lial cells: reversal by AMPK activator. J Steroid Biochem Mol Biol. 
2009;117(4–5):99–106.

 18. Kennedy M, et al. Development of the hemangioblast defines the 
onset of hematopoiesis in human ES cell differentiation cultures. Blood. 
2007;109(7):2679–87.

 19. Lu SJ, et al. Generation of functional hemangioblasts from human embry‑
onic stem cells. Nat Methods. 2007;4(6):501–9.

 20. Qiu X, et al. Oestrogen‑deficiency inducing haematopoiesis dysfunction 
via reduction in haematopoietic stem cells and haematopoietic growth 
factors in rats. Int J Exp Pathol. 2012;93(3):179–87.

 21. Illing A, et al. Estradiol increases hematopoietic stem and progenitor cells 
independent of its actions on bone. Haematologica. 2012;97(8):1131–5.

 22. Sanchez‑Aguilera A, et al. Estrogen signaling selectively induces apop‑
tosis of hematopoietic progenitors and myeloid neoplasms without 
harming steady‑state hematopoiesis. Cell Stem Cell. 2014;15(6):791–804.

 23. Min IM, et al. The transcription factor EGR1 controls both the prolif‑
eration and localization of hematopoietic stem cells. Cell Stem Cell. 
2008;2(4):380–91.

 24. Guo B, et al. Expression, regulation and function of Egr1 during implanta‑
tion and decidualization in mice. Cell Cycle. 2014;13(16):2626–40.

 25. Kim HR, et al. Egr1 is rapidly and transiently induced by estrogen and bis‑
phenol A via activation of nuclear estrogen receptor‑dependent ERK1/2 
pathway in the uterus. Reprod Toxicol. 2014;50:60–7.

 26. Liang XH, et al. Egr1 protein acts downstream of estrogen‑leukemia 
inhibitory factor (LIF)‑STAT3 pathway and plays a role during implantation 
through targeting Wnt4. J Biol Chem. 2014;289(34):23534–45.

 27. Edling CE, Hallberg B. c‑Kit–a hematopoietic cell essential receptor tyros‑
ine kinase. Int J Biochem Cell Biol. 2007;39(11):1995–8.

 28. Hong SH, et al. Cell fate potential of human pluripotent stem cells is 
encoded by histone modifications. Cell Stem Cell. 2011;9(1):24–36.

 29. Gluckman E, et al. Factors associated with outcomes of unrelated 
cord blood transplant: guidelines for donor choice. Exp Hematol. 
2004;32(4):397–407.

 30. Migliaccio AR, et al. Cell dose and speed of engraftment in placental/
umbilical cord blood transplantation: graft progenitor cell content is a 
better predictor than nucleated cell quantity. Blood. 2000;96(8):2717–22.

 31. Yuan Y, et al. Ex vivo amplification of human hematopoietic stem and 
progenitor cells in an alginate three‑dimensional culture system. Int J Lab 
Hematol. 2011;33(5):516–25.

 32. Hong SH, et al. Multiparameter comparisons of embryoid body dif‑
ferentiation toward human stem cell applications. Stem Cell Res. 
2010;5(2):120–30.


	Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	ER-alpha is persistently maintained during hematopoietic differentiation
	Continuous E2 signaling is required to promote hematopoietic output from hPSCs
	E2 significantly increases the number of hemangioblasts and erythroid colonies via ER-α-dependent pathway
	E2 promotes the expansion of hematopoietic progenitors derived from hUCBs

	Discussion
	Conclusions
	Methods
	Maintenance of hiPSCs
	Hematopoietic differentiation and knockdown of ER-α transcript using siRNA
	Flow cytometry analysis
	Colony forming unit (CFU) assay
	Generation of hemangioblast and measurement of colony forming capability
	Harvest of hematopoietic progenitors from human umbilical cord bloods (hUCBs)
	Immunofluorescence staining
	Data analysis

	Authors’ contributions
	References




