3,704 research outputs found

    A variational perturbation scheme for many-particle systems in the functional integral approach

    Full text link
    A variational Perturbation theory based on the functional integral approach is formulated for many-particle systems. Using the variational action obtained through Jensen-Peierls' inequality, a perturbative expansion scheme for the thermodynamic potential is established. A modified Wick's theorem is obtained for the variational perturbation expansions. This theorem allows one to carry out systematic calculations of higher order terms without worrying about the double counting problem. A model numerical calculation was carried out on a nucleon gas system interacting through the Yukawa-type potential to test the efficiency of the present method.Comment: accepted for publication in Phys. Rev.

    Rayleigh-Schroedinger-Goldstone variational perturbation theory for many fermion systems

    Full text link
    We present a Rayleigh-Schroedinger-Goldstone perturbation formalism for many fermion systems. Based on this formalism, variational perturbation scheme which goes beyond the Gaussian approximation is developed. In order to go beyond the Gaussian approximation, we identify a parent Hamiltonian which has an effective Gaussian vacuum as a variational solution and carry out further perturbation with respect to the renormalized interaction using Goldstone's expansion. Perturbation rules for the ground state wavefunctional and energy are found. Useful commuting relations between operators and the Gaussian wavefunctional are also found, which could reduce the calculational efforts substantially. As examples, we calculate the first order correction to the Gaussian wavefunctional and the second order correction to the ground state of an electron gas system with the Yukawa-type interaction.Comment: 11pages, 1figur

    Dance Based Music on Piano

    Get PDF
    According to the Merriam-Webster dictionary, the definition of dance is “to move your body in a way that goes with the rhythm and style of music that is being played.” As you can see in that definition, these two important ways of expressing human feelings, music and dance, are very closely related. Countless pieces of music have been composed for dance, and are still being composed. It is impossible and useless to count how many kinds of dances exist in the world. Different kinds of dances have been developed according to their purposes, cultures, rhythm and tempo. For this reason, the field of dance-related music necessarily expanded significantly. A great deal of dance music has been written for orchestras, small ensembles, or vocals. Along with them, keyboard music also has a huge repertoire of dance pieces. For example, one of the most famous form in Baroque period was suites. Suites usually include 5 or more dance movements in the same key, such as Minuet, Allemende, Courant, Sarabande, Gigue, Bourree, Gavotte, Passepied, and so on. Nationalistic dances like waltz, polonaise, mazurka, and tarantella, were wonderful sources for composers like Chopin, Brahms, and Tchaikovsky. Dance-based movements were used for Mozart and Beethoven’s piano sonatas, chamber works and concertos. Composers have routinely traveled around the world to collect folk and dance tunes from places they visit. For example, Bartok and Balakirev's pieces that are based on folk dances from where they had traveled became famous and are still thought to be valuable for studying and performing today. For these reasons, it is clear that dance-related music is a very important part of keyboard music. In three dissertation recitals, to expand my performing repertoire and to understand dance-related music deeper, I tried to explore many different styles of dances, and compare interpretations between composers. This program note contains information about each pieces’ composers, related dances, and backgrounds. I hope this will be helpful for a future performer who’s seeking an effective dance based keyboard piece

    Critical current densities and flux creep rates in near optimally doped BaFe2-xRuxAs2 (x≈0.7) single crystals

    Get PDF
    We present an investigation of the critical current densities Jc and flux creep rates in a near optimally doped BaFe2-xRuxAs2 (x≈0.7) single crystal by (measuring magnetization). The superconducting critical temperature is 18 K. The in-field dependences of the critical current density Jc are due to a mixed pinning scenario produced mainly by large precipitates and a less significant contribution of random disorder. Furthermore, a Maley analysis in the regime dominated by strong pinning centers (μ0H=0.1 T) is well described through a glassy exponent μ=1.9 and a collective pinning energy (U0) smaller than 100 K.Fil: Haberkorn, Nestor Fabian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Eom, Man Jin. Pohang University of Science and Technology; Corea del SurFil: You, Jung Sang. Pohang University of Science and Technology; Corea del SurFil: Kim, Jeehoon. Pohang University of Science and Technology; Corea del SurFil: Kim, Jun Sung. Pohang University of Science and Technology; Corea del Su

    CTCF, Cohesin, and Chromatin in Human Cancer

    Get PDF
    It is becoming increasingly clear that eukaryotic genomes are subjected to higher-order chromatin organization by the CCCTC-binding factor/cohesin complex. Their dynamic interactions in three dimensions within the nucleus regulate gene transcription by changing the chromatin architecture. Such spatial genomic organization is functionally important for the spatial disposition of chromosomes to control cell fate during development and differentiation. Thus, the dysregulation of proper long-range chromatin interactions may influence the development of tumorigenesis and cancer progression
    corecore