16,010 research outputs found
Metabolite essentiality elucidates robustness of Escherichia coli metabolism
Complex biological systems are very robust to genetic and environmental
changes at all levels of organization. Many biological functions of Escherichia
coli metabolism can be sustained against single-gene or even multiple-gene
mutations by using redundant or alternative pathways. Thus, only a limited
number of genes have been identified to be lethal to the cell. In this regard,
the reaction-centric gene deletion study has a limitation in understanding the
metabolic robustness. Here, we report the use of flux-sum, which is the
summation of all incoming or outgoing fluxes around a particular metabolite
under pseudo-steady state conditions, as a good conserved property for
elucidating such robustness of E. coli from the metabolite point of view. The
functional behavior, as well as the structural and evolutionary properties of
metabolites essential to the cell survival, was investigated by means of a
constraints-based flux analysis under perturbed conditions. The essential
metabolites are capable of maintaining a steady flux-sum even against severe
perturbation by actively redistributing the relevant fluxes. Disrupting the
flux-sum maintenance was found to suppress cell growth. This approach of
analyzing metabolite essentiality provides insight into cellular robustness and
concomitant fragility, which can be used for several applications, including
the development of new drugs for treating pathogens.Comment: Supplements available at
http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd
Far-ultraviolet Emission-line Morphologies of the Supernova Remnant G65.3+5.7
We present the first far-ultraviolet (FUV) emission-line morphologies of the
whole region of the supernova remnant (SNR) G65.3+5.7 using the FIMS/SPEAR
data. The morphologies of the C IV {\lambda}{\lambda}1548, 1551, He II
{\lambda}1640, and O III] {\lambda}{\lambda}1661, 1666 lines appear to be
closely related to the optical and/or soft X-ray images obtained in previous
studies. Dramatic differences between the C IV morphology and the optical [O
III] {\lambda}5007 image provide clues to a large resonant-scattering region
and a foreground dust cloud. The FUV morphologies also reveal the overall
distribution of various shocks in different evolutionary phases and an
evolutionary asymmetry between the east and the southwest sides in terms of
Galactic coordinates, possibly due to a Galactic density gradient in the global
scale. The relative X-ray luminosity of G65.3+5.7 to C IV luminosity is
considerably lower than those of the Cygnus Loop and the Vela SNRs. This
implies that G65.3+5.7 has almost evolved into the radiative stage in the
global sense and supports the previous proposal that G65.3+5.7 has lost its
bright X-ray shell and become a member of mixed-morphology SNRs as it has
evolved beyond the adiabatic stage.Comment: 6 pages, 3 figures, accepted for publication in The Ap
Fast, Interactive Worst-Case Execution Time Analysis With Back-Annotation
Abstract—For hard real-time systems, static code analysis is needed to derive a safe bound on the worst-case execution time (WCET). Virtually all prior work has focused on the accuracy of WCET analysis without regard to the speed of analysis. The resulting algorithms are often too slow to be integrated into the development cycle, requiring WCET analysis to be postponed until a final verification phase. In this paper we propose interactive WCET analysis as a new method to provide near-instantaneous WCET feedback to the developer during software programming. We show that interactive WCET analysis is feasible using tree-based WCET calculation. The feedback is realized with a plugin for the Java editor jEdit, where the WCET values are back-annotated to the Java source at the statement level. Comparison of this treebased approach with the implicit path enumeration technique (IPET) shows that tree-based analysis scales better with respect to program size and gives similar WCET values. Index Terms—Real time systems, performance analysis, software performance, software reliability, software algorithms, safety I
Systematic effects of carbon doping on the superconducting properties of Mg(BC)
The upper critical field, , of Mg(BC) has been
measured in order to probe the maximum magnetic field range for
superconductivity that can be attained by C doping. Carbon doped boron
filaments are prepared by CVD techniques, and then these fibers are then
exposed to Mg vapor to form the superconducting compound. The transition
temperatures are depressed about C and rises at about C. This means that 3.5% C will depress from to and
raise from to . Higher fields are probably
attainable in the region of 5% C to 7% C. These rises in are
accompanied by a rise in resistivity at from about
to about . Given that the samples are polycrystalline wire
segments, the experimentally determined curves represent the upper
manifold associated with
DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress.
Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2
The Parallel Complexity of Growth Models
This paper investigates the parallel complexity of several non-equilibrium
growth models. Invasion percolation, Eden growth, ballistic deposition and
solid-on-solid growth are all seemingly highly sequential processes that yield
self-similar or self-affine random clusters. Nonetheless, we present fast
parallel randomized algorithms for generating these clusters. The running times
of the algorithms scale as , where is the system size, and the
number of processors required scale as a polynomial in . The algorithms are
based on fast parallel procedures for finding minimum weight paths; they
illuminate the close connection between growth models and self-avoiding paths
in random environments. In addition to their potential practical value, our
algorithms serve to classify these growth models as less complex than other
growth models, such as diffusion-limited aggregation, for which fast parallel
algorithms probably do not exist.Comment: 20 pages, latex, submitted to J. Stat. Phys., UNH-TR94-0
Radiation Performance of 1 Gbit DDR SDRAMs Fabricated in the 90 nm CMOS Technology Node
We present Single Event Effect (SEE) and Total Ionizing Dose (TID) data for 1 Gbit DDR SDRAMs (90 nm CMOS technology) as well as comparing this data with earlier technology nodes from the same manufacturer
Multi-Exciton Spectroscopy of a Single Self Assembled Quantum Dot
We apply low temperature confocal optical microscopy to spatially resolve,
and spectroscopically study a single self assembled quantum dot. By comparing
the emission spectra obtained at various excitation levels to a theoretical
many body model, we show that: Single exciton radiative recombination is very
weak. Sharp spectral lines are due to optical transitions between confined
multiexcitonic states among which excitons thermalize within their lifetime.
Once these few states are fully occupied, broad bands appear due to transitions
between states which contain continuum electrons.Comment: 12 pages, 4 figures, submitted for publication on Jan,28 199
Antiferromagnetism and Superconductivity in CeRhIn
We discuss recent results on the heavy fermion superconductor CeRhIn
which presents ideal conditions to study the strong coupling between the
suppression of antiferromagnetic order and the appearance of unconventional
superconductivity. The appearance of superconductivity as function of pressure
is strongly connected to the suppression of the magnetic order. Under magnetic
field, the re-entrance of magnetic order inside the superconducting state shows
that antiferromagnetism nucleates in the vortex cores. The suppression of
antiferromagnetism in CeRhIn by Sn doping is compared to that under
hydrostatic pressure.Comment: 6 pages, 8 figures, to be published in Proc. Int. Conf. Heavy
Electrons (ICHE2010) J. Phys. Soc. Jpn. 80 (2011
- …
