15 research outputs found

    Entity Tracking in Language Models

    Full text link
    Keeping track of how states of entities change as a text or dialog unfolds is a key prerequisite to discourse understanding. Yet, there have been few systematic investigations into the ability of large language models (LLMs) to track discourse entities. In this work, we present a task probing to what extent a language model can infer the final state of an entity given an English description of the initial state and a series of state-changing operations. We use this task to first investigate whether Flan-T5, GPT-3 and GPT-3.5 can track the state of entities, and find that only GPT-3.5 models, which have been pretrained on large amounts of code, exhibit this ability. We then investigate whether smaller models pretrained primarily on text can learn to track entities, through finetuning T5 on several training/evaluation splits. While performance degrades for more complex splits, we find that even when evaluated on a different set of entities from training or longer operation sequences, a finetuned model can perform non-trivial entity tracking. Taken together, these results suggest that language models can learn to track entities but pretraining on text corpora alone does not make this capacity surface.Comment: ACL 2023 Camera-read

    Compositional Linguistic Generalization in Artificial Neural Networks

    Get PDF
    Compositionality---the principle that the meaning of a complex expression is built from the meanings of its parts---is considered a central property of human language. This dissertation focuses on compositional generalization, a key benefit of compositionality that enables the production and comprehension of novel expressions. Specifically, this dissertation develops a test for compositional generalization for sequence-to-sequence artificial neural networks (ANNs). Before doing so, I start by developing a test for grammatical category abstraction: an important precondition to compositional generalization, because category membership determines the applicability of compositional rules. Then, I construct a test for compositional generalization based on human generalization patterns discussed in existing linguistic and developmental studies. The test takes the form of semantic parsing (translation from natural language expressions to semantic representations) where the training and generalization sets have systematic gaps that can be filled by composing known parts. The generalization cases fall into two broad categories: lexical and structural, depending on whether generalization to novel combinations of known lexical items and known structures is required, or generalization to novel structures is required. The ANNs evaluated on this test exhibit limited degrees of compositional generalization, implying that the inductive biases of the ANNs and human learners differ substantially. An error analysis reveals that all ANNs tested frequently make generalizations that violate faithfulness constraints (e.g., Emma saw Lina ↝ see'(Emma', Audrey') instead of see'(Emma', Lina')). Adding a glossing task (word-by-word translation)---a task that requires maximally faithful input-output mappings---as an auxiliary objective to the Transformer model (Vaswani et al. 2017) greatly improves generalization, demonstrating that a faithfulness bias can be injected through the auxiliary training approach. However, the improvement is limited to lexical generalization; all models struggle with assigning appropriate semantic representations to novel structures regardless of auxiliary training. This difficulty of structural generalization leaves open questions for both ANN and human learners. I discuss promising directions for improving structural generalization in ANNs, and furthermore propose an artificial language learning study for human subjects analogous to the tests posed to ANNs, which will lead to more detailed characterization of the patterns of structural generalization in human learners

    SLOG: A Structural Generalization Benchmark for Semantic Parsing

    Full text link
    The goal of compositional generalization benchmarks is to evaluate how well models generalize to new complex linguistic expressions. Existing benchmarks often focus on lexical generalization, the interpretation of novel lexical items in syntactic structures familiar from training; structural generalization tasks, where a model needs to interpret syntactic structures that are themselves unfamiliar from training, are often underrepresented, resulting in overly optimistic perceptions of how well models can generalize. We introduce SLOG, a semantic parsing dataset that extends COGS (Kim and Linzen, 2020) with 17 structural generalization cases. In our experiments, the generalization accuracy of Transformer models, including pretrained ones, only reaches 40.6%, while a structure-aware parser only achieves 70.8%. These results are far from the near-perfect accuracy existing models achieve on COGS, demonstrating the role of SLOG in foregrounding the large discrepancy between models' lexical and structural generalization capacities.Comment: Accepted to EMNLP 202

    LAMBADA: Backward Chaining for Automated Reasoning in Natural Language

    Full text link
    Remarkable progress has been made on automated reasoning with knowledge specified as unstructured, natural text, by using the power of large language models (LMs) coupled with methods such as Chain-of-Thought prompting and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to the set of axioms that support it) is significantly more efficient at proof-finding problems. We import this intuition into the LM setting and develop a Backward Chaining algorithm, which we call LAMBADA, that decomposes reasoning into four sub-modules, each of which can be simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves massive accuracy boosts over state-of-the-art forward reasoning methods on two challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.Comment: 16 page

    Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples

    Full text link
    Given the intractably large size of the space of proofs, any model that is capable of general deductive reasoning must generalize to proofs of greater complexity. Recent studies have shown that large language models (LLMs) possess some abstract deductive reasoning ability given chain-of-thought prompts. However, they have primarily been tested on proofs using modus ponens or of a specific size, and from the same distribution as the in-context examples. To measure the general deductive reasoning ability of LLMs, we test on a broad set of deduction rules and measure their ability to generalize to more complex proofs from simpler demonstrations from multiple angles: depth-, width-, and compositional generalization. To facilitate systematic exploration, we construct a new synthetic and programmable reasoning dataset that enables control over deduction rules and proof complexity. Our experiments on four LLMs of various sizes and training objectives show that they are able to generalize to longer and compositional proofs. However, they require explicit demonstrations to produce hypothetical subproofs, specifically in proof by cases and proof by contradiction

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License
    corecore