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Abstract
Remarkable progress has been made on auto-
mated reasoning with natural text, by using
Language Models (LMs) and methods such
as Chain-of-Thought and Selection-Inference.
These techniques search for proofs in the for-
ward direction from axioms to the conclusion,
which suffers from a combinatorial explosion
of the search space, and thus high failure rates
for problems requiring longer chains of rea-
soning. The classical automated reasoning lit-
erature has shown that reasoning in the back-
ward direction (i.e. from the intended con-
clusion to supporting axioms) is significantly
more efficient at proof-finding. Importing this
intuition into the LM setting, we develop a
Backward Chaining algorithm, called LAM-
BADA, that decomposes reasoning into four
sub-modules. These sub-modules are simply
implemented by few-shot prompted LM infer-
ence. We show that LAMBADA achieves siz-
able accuracy boosts over state-of-the-art for-
ward reasoning methods on two challenging
logical reasoning datasets, particularly when
deep and accurate proof chains are required.

1 Introduction

Automated reasoning, the ability to draw valid con-
clusions from explicitly provided knowledge, has
been a fundamental goal for AI since its early
days (McCarthy, 1959; Hewitt, 1969). Further-
more, logical reasoning, especially reasoning with
unstructured, natural text is an important build-
ing block for automated knowledge discovery and
holds the key for future advances across various sci-
entific domains. While in recent years tremendous
progress has been made towards natural language
understanding thanks to pretrained language mod-
els (LMs) (Brown et al., 2020; Chowdhery et al.,
2022, i.a.,), the performance of these models for
logical reasoning still lags behind (Rae et al., 2021;
Creswell et al., 2023; Valmeekam et al., 2022) com-
pared to the advancements in other areas such as
reading comprehension and question-answering.

Facts:
1. Rough and cold that is what they 

say about Blue Bob. 
2. Eric, who is relatively young, is also 

pretty big and tends to be cold. 
3. Fred is green and cold too. 
4. For being so cold, it's good Harry 

can remain nice.
Rules:
1. Rough, cold people are blue. 
2. Big, kind folks are green ones. 
3. If a person is big, rough, and cold, 

they are also red. 
4. Most round and cold people are 

often rough. 
5. Cold, young people are also certain 

to be rough people. 
6. An individual who is big, red and 

young is also a nice individual.
Goal:

● Eric is nice?
Label

● Proved

Fact Check Cache

Rule Selection

Decompose

Rule6

Eric is nice

Eric is red
Rule Selection

Decompose

Eric is big Eric is young

Rule3

Cache

Eric is big

Cache

Eric is cold

Eric is rough

Rule Selection

Decompose

Rule4

Decompose

Rule5

Eric is round

Rule Selection

Eric is cold

Pruned Fact Check Fact Check

Eric is cold Eric is young

Figure 1: The search trace of LAMBADA on an exam-
ple from the ParaRules subset of ProofWriter (the Sign
Agreement and failed Fact Check modules are omitted
for brevity).

While many problems benefit from LM scaling,
scaling has been observed to provide limited benefit
for solving complex reasoning problems. For ex-
ample, Creswell et al. (2023) observed that for the
Gopher family of LMs (Rae et al., 2021), the bene-
fit of scaling for logic-based tasks is significantly
worse than for other language tasks. Moreover,
while finetuning initially seemed to enable logical
reasoning in LMs (Clark et al., 2021; Tafjord et al.,
2021), further exploration revealed that finetuned
LMs mostly exploit spurious correlations (e.g., the
correlation between the number of rules and the
label) as opposed to learning to reason (Zhang
et al., 2022b; Schlegel et al., 2022; Liu et al., 2023).
Recently, prompting strategies such as Chain-of-
Thought (Wei et al., 2022) and Scratchpad (Nye
et al., 2022) have contributed to improving perfor-
mance of LMs on reasoning tasks, although they
have been also shown to struggle with proof plan-
ning for more complex logical reasoning problems
(Saparov and He, 2023).

One solution to the aforementioned problems is
to integrate the strength and reliability of classical
AI models in logical reasoning with LMs (Garcez
and Lamb, 2020; Marcus, 2020). In the literature,
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there are two major approaches to logical reasoning
(Poole and Mackworth, 2010):

1. Forward Chaining (FC) where one starts from
the facts and rules (“theory”), and iterates be-
tween making new inferences and adding them to
the theory until the goal statement can be proved
or disproved,

2. Backward Chaining (BC) where one starts from
the goal and uses the rules to recursively decom-
pose it into sub-goals until the sub-goals can be
proved or disproved based on the theory.

Previous approaches to reasoning with LMs mostly
incorporate elements of FC into LMs (Tafjord et al.,
2021; Creswell et al., 2023). FC requires select-
ing a subset of facts and rules from the entire set,
which might be difficult for an LM as it requires a
combinatorial search over a large space. Moreover,
deciding when to halt and declare failure to prove
is challenging in FC, as also noted by Creswell
et al. (2023), sometimes requiring specialized mod-
ules trained on intermediate labels (Creswell and
Shanahan, 2022). Indeed, the classical automated
reasoning literature is heavily weighted towards
BC or goal-directed strategies for proof-finding.

In this paper, we show experimentally that BC
is better suited for text-based deductive logical rea-
soning, as it does not require a combinatorial search
for subset selection and there are more natural halt-
ing criteria for it. We develop a hybrid LAnguage
Model augmented BAckwarD chAining technique
(LAMBADA), where BC drives the high-level proof
planning, and the LM performs the textual under-
standing and individual reasoning steps. We con-
duct experiments with challenging datasets for LM
reasoning containing examples expressed in natu-
ralistic text. The datasets contain proof chains of
up to 5 hops in depth, and examples where the goal
can neither be proved nor disproved from the pro-
vided theory. We show that LAMBADA achieves
substantially higher deductive accuracy, and is con-
siderably more likely to generate valid reasoning
chains compared to other techniques which find cor-
rect conclusions with spurious proof traces, while
also being more query efficient than other LM-
based modular reasoning approaches. Our results
strongly indicate that future work on reasoning
with LMs should incorporate backward chaining or
goal-directed planning strategies.

2 Related Work

The deep learning based models that have been
developed to solve text-based (logical) reasoning
tasks can be categorized as follows (see Huang and
Chang 2022 for a recent survey of the literature).

Pretraining on Relevant Tasks: Pretraining an
LM on corpora relevant to the target reasoning task
can lead to improvements (Hendrycks et al., 2021;
Shen et al., 2021). Pretraining is, however, costly
especially for larger LMs.

Implicit Reasoning: These approaches finetune
LMs to produce the label directly given the input
(Clark et al., 2021; Betz et al., 2021; Saeed et al.,
2021; Han et al., 2022); reasoning is expected to
happen implicitly in the parameters of the LM. It
has been shown that finetuning LMs on logical
reasoning tasks makes them learn spurious corre-
lations (Zhang et al., 2022b; Schlegel et al., 2022),
and is not robust to multi-hop reasoning (Kass-
ner et al., 2020). Besides, finetuning large LMs
is costly especially when the dataset is large, and
may introduce distributional shocks to the model
(Kazemi et al., 2023). In this paper, we focus on
models that only take in-context examples as super-
vision.

Explicit Reasoning: Generating the interme-
diate reasoning steps such as the chain of rea-
soning (Wei et al., 2022; Nye et al., 2022; Dalvi
et al., 2021; Zelikman et al., 2022; Zhang et al.,
2022a) has shown substantial improvement for
many reasoning tasks (Suzgun et al., 2022). Such
chains have been explored both in the forward and
the backward directions, e.g., using multiple con-
strained LMs for logical reasoning (Zhang et al.,
2022a). Gontier et al. (2020) investigated how
transformer models perform when trained to per-
form forward or backward chaining, and drew con-
clusions about their internal reasoning strategies.
We compare against a popular recent prompting
strategy, namely Chain-of-Thought (CoT) (Wei
et al., 2022), from this category.

Verifiers: To improve CoT, some works train a
verifier using chain-level labels. The verifier takes
a reasoning chain produced by the model as input
and judges the quality of the chain (Cobbe et al.,
2021; Shen et al., 2021; Jhamtani and Clark, 2020;
Zelikman et al., 2022). Using this verifier, one can
then generate multiple reasoning chains (e.g., by
running the algorithm multiple times with differ-
ent decoding temperatures) and use the best chain
according to the verifier. Since LAMBADA also
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generates proofs, verifiers are also applicable to
our algorithm. In this paper, we assume not having
access to chain-level labels, and leave experiments
with verifiers as future work.

Length generalization: A number of ap-
proaches specifically look into whether LMs can
generalize from examples requiring shorter reason-
ing chains (shown to them either as demonstration
or as finetuning data) to examples requiring longer
chains (Anil et al., 2022; Tafjord et al., 2021). With
our model, length generalization comes for free
because the model learns the building blocks of
solving the problem that are applied as many times
as needed to solve the problem.

Modular Reasoning: These approaches break
the problem into smaller modules and use sepa-
rate LMs to solve each module (Zhou et al., 2022;
Khot et al., 2023; Sprague et al., 2022; Zhou et al.,
2023; Dua et al., 2022; Wang et al., 2022; Schlag
et al., 2023). LM-based approaches to logical rea-
soning typically makes use of a single LM module;
for example, in Tafjord et al. (2021), a single LM
module iteratively and exhaustively infers all con-
clusions based on the facts and rules, and then the
goal statement is compared against the final set of
conclusions to confirm if it can be proved from
the theory. Since exhaustively deriving all conclu-
sions is computationally expensive, Creswell et al.
(2023) consider a more scalable approach where
the conclusions that are derived are informed by the
goal; they iteratively apply two LLM modules one
selecting a subset of the facts and rules informed
by the goal and the other making new inferences
based on the selected facts and rules and adding
it back to the theory. In this paper, we compare
against the second approach.

Natural Language Inference (NLI): Logical
reasoning can also be understood as identifying
whether a logical entailment relation holds be-
tween two propositions (premise and hypothesis;
the premise is the theory and the hypothesis is the
statement to be proved). In this sense, NLI models
are also relevant, although inferences under NLI
typically adopt a more relaxed notion of entailment
rather than purely logical (Dagan et al., 2013; Bow-
man et al., 2015; Williams et al., 2018).

3 LAMBADA: Language Model
Augmented Backward Chaining

We focus on performing automated reasoning over
facts, i.e., natural language assertions such as

“Nice people are red”, that are coherent but
not necessarily grounded in reality. A rule is a nat-
ural language statement that is either of the form,
or can be rewritten in the form, “If P then Q”;
e.g., “Rough, cold people are blue” can be
rewritten as “If a person is rough and cold,
then they are blue”. P is called the antecedent
and Q is called the consequent of the rule. A the-
ory C consists of facts F = {f1, f2, . . . , fn} and
rules R = {r1, r2, . . . , rm}. We let G represent a
goal that we would like to prove or disprove based
on the theory. An example theory with fictional
characters and rules is demonstrated in Figure 1.
Based on the theory, one should prove or disprove
the goal “Eric is nice”.

3.1 Backward Chaining

Backward chaining (BC) is a strategy for reasoning
that starts from the goal and recursively breaks the
goal into sub-goals based on the rules that can be
applied to it, until the sub-goals can be proved or
disproved based on the facts or no more rules can
be applied to break down the sub-goal further.

Figure 1 shows an example of BC applied to
a theory to prove a goal. Initially, BC verifies if
the goal can be proved or disproved based on the
facts (this step is omitted from the figure). Since
none of the facts directly prove or disprove the goal,
BC next selects a rule that can be applied to break
down the goal into sub-goals. Whether or not a
rule applies to a goal is determined by an operation
called unification in logic; Rule6 has the same con-
sequent as the goal so the operation can be applied,
but the other rules have different consequents and
it cannot be applied. Using Rule6, the goal can be
broken down into three sub-goals that should be
proved for the goal to be proved. BC then makes
recursive calls to prove each sub-goal. The algo-
rithm continues until either a halting criterion is
reached (e.g., reaching a certain depth in search),
or a sub-goal can no longer be broken down (e.g.,
the left sub-tree under “Eric is rough”), or all
sub-goals are proved (e.g., the right sub-tree under
“Eric is rough”).

The outcome of BC for a goal is either PROVED,
DISPROVED, or UNKNOWN; e.g., its output for the
goal in Figure 1 is PROVED, for “Fred is not
green?” is DISPROVED (because it contradicts
Fact3), and for “Fred is round?” is UNKNOWN

(because the theory does not entail or contradict it).
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3.2 LM Modules in LAMBADA

To enable applying BC for text-based reasoning,
we introduce four LM-based modules: Fact Check,
Rule Selection, Goal Decomposition, and Sign
Agreement, each implemented by showing relevant
in-context demonstrations to a pretrained LM (see
Appendix D.3 for details). We describe these mod-
ules and then proceed to the full algorithm.

3.2.1 Fact Check

Given a set of facts F from the theory and a goal
G, the Fact Check module verifies if there exists a
fact f ∈ F such that f entails G (in which case the
goal is proved) or f entails the negation of G (in
which case the goal is disproved). If no such fact
can be found, then the truth of G remains unknown.

We implement Fact Check with two sub-
modules: the first sub-module selects a fact from
the set of facts that is most relevant to the goal, and
the second sub-module verifies if the goal can be
proved or disproved based on that fact.1 Since the
first sub-module may fail to identify the best fact
on the first try, if the truth of the goal remained
unknown after one try, the selected fact can be re-
moved and the sub-modules can be called again.
This process can be repeated multiple times. In our
experiments, we call the two sub-modules twice.

3.2.2 Rule Selection

Given a set of rulesR from the theory and a goal
G, the Rule Selection module identifies the rules
r ∈ R such that the consequent of r unifies with G.
These rules are then used for decomposing the goal
into sub-goals. If no such rule can be identified,
then the truth of G remains unknown.

As we did for Fact Check, we implement Rule Se-
lection with two sub-modules: the first sub-module
identifies the consequent of each rule (independent
of the goal), and the second sub-module takes the
rule consequents and the goal as input and iden-
tifies which one unifies with the goal. Note that
due to the recursive nature of BC, the Rule Selec-
tion module may be invoked multiple times during
the proof of a goal. Since identifying the conse-
quent of each rule is independent of the goal, this
sub-module only needs to be called once.

1Note that we select only one fact because the goals
and sub-goals in the datasets we work with can be
proved/disproved using single facts; The two modules can
be adapted to selected multiple facts if this is not the case.

Algorithm 1 LAMBADA

Input: Theory C = (F ,R), Goal G, Max-Depth
D

1: factCheckResult = FactCheck(G, F)
2: if factCheckResult 6= UNKNOWN then
3: return factCheckResult
4: if D == 0 then
5: return UNKNOWN

6: Rs = RuleSelection(G,R)
7: for r ∈ Rerank(Rs) do
8: G = GoalDecomposition(r,G)
9: if ProveSubgoals(C, G, D) then

10: if SignAgreement(r, G) then
11: return PROVED

12: else
13: return DISPROVED

14: return UNKNOWN

3.2.3 Goal Decomposition
Given a rule r and a goal G such that the consequent
of r unifies with G, the Goal Decomposition mod-
ule identifies the sub-goals that need to be proved
in order for G to be proved or disproved. The sub-
goals are identified based on the antecedent of r.

3.2.4 Sign Agreement
In the case where we succeed in proving the an-
tecedent of r, whether the goal is proved or dis-
proved depends on whether the sign of the goal
agrees or disagrees with the sign of the consequent
of r. For instance, in Figure 1, for the goal “Eric
is nice.”, since the sign of the goal agrees with
the sign of the consequent of Rule6 and the an-
tecedent of the rule is proved, we conclude that the
goal is proved. However, if Rule6 was “[...] is
not going to be a nice individual.”, then
the sign of the goal would disagree with the sign
of the consequent and so we would conclude that
the goal is disproved. This motivates the fourth
module, Sign Agreement, described below.

Given a rule r and a goal G, the Sign Agreement
module verifies if the sign of the consequent of r
agrees or disagrees with the sign of the goal or not.

3.3 The LAMBADA Algorithm

Algorithm 1 provides a high-level description of
how the four LM modules described earlier can
be integrated with BC to enable text-based logical
reasoning (the function calls corresponding to LM
modules are color-coded).

LAMBADA can be understood as a depth-first
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Algorithm 2 ProveSubgoals
Input: Theory C = (F ,R), Sub-Goals G, Max-
Depth D

1: for G in G do
2: result = LAMBADA(C, G, D-1)
3: if result 6= PROVED then
4: return False # Assuming conjunction
5: return True

search algorithm over the facts and the rules. It
takes as input a theory C = (F ,R), a goal G, and
a depth D that defines a halting criterion for the
algorithm based on the maximum allowed depth
for the search. The search depth is a natural halting
criterion corresponding to the maximum number of
reasoning hops required for answering questions.

Initially, the algorithm uses the Fact Check mod-
ule to check if G can be proved or disproved using
the facts. If this is the case, then the algorithm stops
and returns the result (PROVED or DISPROVED).

If G cannot be proved or disproved, then the
algorithm checks the depth D: if D = 0, then the
algorithm stops and returns UNKNOWN indicating
that G could not be proved or disproved. Otherwise,
the algorithm proceeds with applying rules.

The Rule Selection module is used to identify the
rulesRs fromR whose consequent unifies with G.
Once the setRs is identified, if LAMBADA can start
with the rules that have a higher chance of succeed-
ing at (dis)proving the goal, it can save computa-
tions and be less error-prone. Therefore, we include
a Rerank function in LAMBADA. Based on the in-
tuition that shorter rules are likely to have fewer
sub-goals (hence a higher chance of success), we
start the search from shorter rules and proceed to
longer rules if the shorter ones fail. We leave more
sophisticated ranking strategies as future work.

For each selected rule, the algorithm uses the
Goal Decomposition module to decompose G into
a set of sub-goals G that need to be proved and
checks whether those sub-goals can be proved by
making recursive calls to the algorithm (with re-
duced depth). If the sub-goals can be proved, then
the algorithm uses the Sign Agreement module
to check whether the sign of the rule consequent
agrees or disagrees with the sign of G. If it does,
then the algorithm returns PROVED and otherwise
DISPROVED. If there is no rule for which the sub-
goals can be proved, then UNKNOWN is returned.

During a proof, LAMBADA may be called mul-
tiple times with the same theory and goal; in Ap-

pendix A we explain how cycles and redundant
computations can be avoided using a cache.

4 Experimental Setup

We describe our baselines and datasets here, and
provide further implementation details in Ap-
pendix D. Unless stated otherwise, all experiments
are based on the PaLM 540B model (Chowdhery
et al., 2022).

4.1 Baselines

We compare against the following two baselines.
Chain-of-Thought (CoT) (Wei et al., 2022) is

a popular neural approach based on demonstrat-
ing chains of inference to the LM within the
in-context prompt. In addition to the few-shot
demonstrations in <INPUT>/<LABEL> format in typ-
ical in-context learning settings, in CoT, an in-
termediate explanation for the label is also pro-
vided (<INPUT>/<EXPLANATION>/<LABEL>). In
our work, the explanation corresponds to the proof.

Selection-Inference (SI) (Creswell et al., 2023)
is a strong modular reasoning approach based on
forward chaining. SI contains two modules: (1) se-
lection, which, guided by the goal, selects a subset
of the facts and rules from which new conclusions
can be derived toward proving the goal, and (2)
inference, which takes the selected facts and rules
and derives a new conclusion. The two modules
are called iteratively, each time producing a single
conclusion that is added back to the theory before
the next iteration. The iterations continue until a
halting criterion is met (a fixed number of steps in
Creswell et al. 2023).

4.2 Datasets

We experiment with challenging deductive logical
reasoning datasets outlined below.

ProofWriter (Tafjord et al., 2021) is a com-
monly used synthetic dataset for testing logical rea-
soning when facts and rules are expressed in natu-
ralistic text. It contains two subsets: an open-world
assumption (OWA) subset and a closed-world as-
sumption (CWA) subset. In this paper, we use the
OWA subset. Each example is a (theory, goal) pair
and the label is one of {PROVED, DISPROVED,
UNKNOWN} where UNKNOWN indicates that the
goal can neither be proved nor disproved. The
dataset has five parts, each part requiring 0, ≤ 1,
≤ 2, ≤ 3 and ≤ 5 hops of reasoning, respectively.
We report two sets of results on this dataset: (1)
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Figure 2: Prediction accuracy results on (a) ProofWriter-PUD (b) ProofWriter-PD, (c) PrOntoQA, and (d)
ParaRules datasets. (e) The proof accuracy of CoT and LAMBADA on ProofWriter (Depth-5) for a set of ran-
domly sampled examples for which the models correctly predicted if the goal can be proved or disproved.

with examples labeled UNKNOWN removed (for
compatibility with previous work), and (2) with all
three labels. Note that intermediate proof chains
from ProofWriter are not used by our models in
making predictions. For both cases, due to the cost
of inference, we used the first 1000 examples in the
test set. Hereafter, we refer to these two subsets as
ProofWriter-PD and ProofWriter-PUD.

PrOntoQA (Saparov and He, 2023) is a syn-
thetic dataset created to analyze the capacity of
LM-based approaches for logical reasoning. Com-
pared to ProofWriter, PrOntoQA has lower natural
language diversity and less l fact/rule variations
(e.g., no conjunctions). However, the search traces
typically contain multiple paths with only one of
them leading to the proof, thus enabling testing the
proof planning of different models. This dataset
has multiple versions; we use the fictional charac-
ters version, which is one of the hardest versions
according to Saparov and He (2023). Similarly
to ProofWriter, each version of PrOntoQA is di-
vided into different parts depending on the depth
of reasoning chains required (1, 3, and 5 hops).

ParaRules (Tafjord et al., 2021) is a version
of ProofWriter where the synthetically generated
sentences in the theory are rewritten by crowdwork-
ers to increase diversity and naturalness of the text.
This lets us move beyond evaluating reasoning with
templatic expressions, which is a key limitation of
the other datasets. Each fact in ParaRules may be

a combination of several sub-facts (see Fig. 1 for
an example). The examples require proof depths
of up to 5 and the label can be PROVED, DIS-
PROVED, or UNKNOWN. We found some minor
quality issues in ParaRules; we manually verified
and fixed the first 500 examples of the test set (see
Appendix D.2) and used this set for evaluation.

5 Results

We now describe the results and compare LAM-
BADA and the baselines in detail.

5.1 Label Prediction Accuracy
The results are reported in Figure 2, (a)–(d).2 LAM-
BADA significantly outperforms the baselines, es-
pecially on ProofWriter-PUD which contains UN-
KNOWN labels (44% relative improvement com-
pared to CoT and 56% compared to SI on Depth-5),
the higher depths of PrOntoQA (37% relative im-
provement compared to CoT and 113% compared
to SI on Depth-5), and the ParaRules dataset (43%
relative improvement compared to CoT). These
results overall show the merit of LAMBADA for
logical reasoning. We highlight that the reason-
ing capacity of LAMBADA robustly generalizes to
more naturalistic expressions, as demonstrated by
the high accuracy on ParaRules, which is exactly

2Due to the low performance of SI on ProofWriter and
PrOntoQA and its high number of LM calls (see Figure 7), we
only compared LAMBADA against CoT for ParaRules.
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Figure 3: The success rate of the k-th inference of SI
on PrOntoQA (Depth-5) for different values of k. As
k increases, the size of the input theory becomes larger
and the success rate decreases.

the desired outcome of combining the strengths of
an LM and a symbolic reasoning algorithm.

The results in Figure 2(a) reveal a shortcoming
of the CoT approach in dealing with UNKNOWN

labels. That is, unlike the examples for which the
label is PROVED or DISPROVED, there is no natural
chain of thought for the examples whose labels are
UNKNOWN. Nevertheless, the performance of CoT
is competitive for the ProofWriter-PD dataset, and
the accuracy does not diminish substantially with
increasing depth. We investigate the reason for this
behaviour of CoT in the next section.

5.2 Proof Accuracy

To understand the reason behind the high accuracy
of CoT on higher depths of ProofWriter-PD, we
randomly selected 50 examples from Depth-5 of
the dataset where CoT predicted the label correctly,
and manually verified if the proof chain is correct or
not. For comparison, we also manually verified the
proofs generated by LAMBADA following a similar
procedure. The results are reported in Figure 2(e).

While LAMBADA mostly produces correct
chains, CoT produces correct chains only for 28%
of the examples. We find that hallucination is the
main source of error (48% of the examples; see Ap-
pendix B.2 for other prominent failure modes). The
hallucinated facts and rules mostly resulted in short-
cuts to the correct answer. This hints at the possi-
bility of spurious correlations in ProofWriter-PD
that can be exploited by CoT (see Appendix B.2,
Figure 10 for examples). This result is consistent
with previous work showing that when LMs are
asked to solve logical reasoning end-to-end, they
rely on spurious correlations (Zhang et al., 2022b).
Note that for modular approaches like SI and LAM-
BADA, the intermediate modules are impervious to
the spurious correlations between the input and the
label and do not suffer from this issue.

5.3 Forward vs. Backward Chaining

As previously explained, SI is based on forward
chaining and its selection module requires a com-
binatorial search to find the right subset of facts
and rules (see Appendix C), and the search space
becomes progressively larger in each iteration of
the algorithm as new inferences are added to the
theory. To verify whether the increase in the search
space makes forward chaining progressively harder,
we measured the success rate of the k-th inference
of SI for different values of k on Depth-5 of PrOn-
toQA (see Appendix B.3 for details). From the
results in Figure 3, we can see that the success
rate indeed decreases in the later inferences of the
model, where the size of the input theory is larger
and therefore a larger space needs to be searched to
find the right combination of facts and rules. Note
that none of the components in LAMBADA require
selecting a subset, hence no combinatorial search
is required (see Appendix C for more details).

SI also suffers from inferring redundant facts.
Figure 4 reports the number of unique infer-
ences from SI for the examples in ProofWriter-
PD (Depth-5) where SI incorrectly predicted UN-
KNOWN (i.e., examples where a proof exists but
SI failed to find it). The result shows that SI infer-
ences contained no redundant facts only 29% of the
time; in 7% of the cases, all 5 inferred facts were
identical, and in another 10%, only two unique in-
ferences were made. This shows that SI, and maybe
more generally forward-chaining approaches, suf-
fer from redundant inference.

SI also over-predicts DISPROVED in the binary
case and UNKNOWN in the three-way classification
case (see Appendix B.4), performing even worse
than the majority class for Depth-5 of PrOntoQA
which has more PROVED labels than DISPROVED.

These results, together with Figure 2, show that
backward chaining (which is the backbone of rea-
soning in LAMBADA) is a better choice compared
to forward chaining (the backbone in SI).

7%
10%

20%

34%

29%

1 unique inference
2 unique inferences
3 unique inferences
4 unique inferences
5 unique inferences

Figure 4: Number of unique inferences generated by
SI for Depth-5 of ProofWriter-PUD when selection and
inference modules are called five times.
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Figure 5: Prediction accuracy results on (a) ProofWriter-PUD and (b) ProofWriter-PD with forward and backward
CoT. (c) compares the proof accuracy of forward and backward CoT on ProofWriter (Depth-5) for a set of randomly
sampled examples for which the models correctly predicted the proof label.
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Figure 6: ProofWriter (val) performance of modules
in LAMBADA in isolation, for different LM sizes.

5.4 Does Backward CoT Suffice?

Our results may raise the question of whether it is
enough to directly incorporate the steps of back-
ward chaining into CoT prompts, or if modularity
(as in LAMBADA) is also needed. To answer this
question, we experiment with a backward version
of CoT where the proofs are written in the back-
ward direction from the goal to the premises. The
label accuracies are presented in Figure 5(a)–(b) for
ProofWriter-PUD and ProofWriter-PD, and their
proof accuracy on ProofWriter-PD (Depth-5) in
Figure 5(c). The label accuracy of forward and
backward CoT are comparable, but forward CoT
leads to better performance on PUD and backward
CoT leads to better performance on PD. For proof
accuracy, however, we see a clear difference be-
tween the two versions where backward CoT pro-
duces substantially lower quality proofs compared
to forward chaining. This result is consistent with
the observations of Gontier et al. (2020) for fine-
tuned LMs.

The above results show that a modular formula-
tion (as in LAMBADA) is key to successful logical
reasoning and simply providing CoT in the back-
ward direction does not suffice. We note, however,

that future work can use the traces of our model to
finetune (smaller) language models (e.g., Zelikman
et al. 2022), or use the traces as training data in fu-
ture language models to improve their performance
with CoT prompting.

Taking the label and proof accuracy results to-
gether, there is also a potential that backward CoT
models are more heavily relying on spurious cor-
relations for the PD case where backward CoT
outperformed CoT, as backward CoT achieves a
similar label accuracy as forward CoT but with a
much lower proof accuracy.

5.5 Qualitative Analysis

In Figure 1, we show the search trace created by
LAMBADA for an example from ParaRules, where
the answer was predicted correctly. From the figure,
one can see how backward chaining helps LAM-
BADA effectively search and create the reasoning
chain and how the LM helps fact checking, rule
selection, goal decomposition, and sign agreement
checking. In Appendix B.1, we include an example
that has a much larger search trace.

5.6 Individual Module Analysis

To understand which components in LAMBADA

are responsible for the failure cases, we computed
the individual accuracy of the four modules de-
scribed in Section 3. For this purpose, we created
four datasets from the validation set of ProofWriter,
each measuring only the performance of one mod-
ule in isolation (see Appendix D.1 for details).

Based on the results of the PaLM 540B model in
Figure 6, Rule Selection is the lowest performing
module followed by Goal Decomposition. It is pos-
sible that the Rule Selection module (partially) fails
for some examples but LAMBADA still arrives at
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Figure 7: Comparing LAMBADA and SI w.r.t. the av-
erage number of inference calls they make per example
for different subsets of the ProofWriter-PUD dataset.

the correct conclusion and proof (e.g., if in Figure 1
the third call to Rule Selection only returned Rule5).
For Fact Check, when we allow the model to only
select one fact, the accuracy is 0.94 but when we
allow the model to select two facts, the accuracy
is near perfect. The Sign Agreement module also
shows near-perfect accuracy.

5.7 The Role of Scale

We repeat the experiment from Section 5.6 with
PaLM 62B and 8B to examine the effect of LM
scale on LAMBADA. According to the results in
Figure 6, when we use PaLM 62B, the performance
of the Goal Decomposition and Sign Agreement
modules remain comparable, but the performance
for the Fact Check and Rule Selection modules
drop substantially. Unlike the first two modules,
the second two rely on a one-to-many comparison
between the goal and each of the facts/rules which
may require a larger model capacity. Moreover,
we observe that in PaLM 8B, the accuracy for all
components drops significantly, in some cases be-
coming close to random prediction.

We argue that the extent to which the higher-
level reasoning algorithm breaks the problem into
sub-problems should be dependent on the scale
and power of the base LMs. If smaller LMs are
used, then one may need finer-grained problem de-
composition (e.g., further decomposing the one-to-
many comparisons in the selection module). And
as LMs become larger and stronger in the future,
one could rely on them to solve problems with a
coarser-grained decomposition of the problem.

5.8 Number of Inference Calls

Another advantage of LAMBADA is its efficiency
compared to other approaches that require multiple
LM inference calls per example such as SI. In Fig-
ure 7, we compare the average number of LM calls
per example, for different depths of ProofWriter-
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Figure 8: The performance of LAMBADA on
ProofWriter-PUD for the original, novel token, and
novel template test sets.

PUD. LAMBADA requires much fewer calls com-
pared to SI, especially at higher depths: for Depth-
1, LAMBADA requires 3.8x fewer calls whereas for
Depth-5 it requires 11.8x fewer calls.

5.9 Lexical Robustness
To analyze the lexical sensitivity of LAMBADA, we
modified the test set of ProofWriter-PUD by replac-
ing various lexical items (names, adjectives, and
verbs) with novel tokens and the rule templates with
novel ones. We then compared the performance of
LAMBADA on the original and the modified test
sets using the same few-shot examples. The de-
tails of the modifications are in Appendix B.5. As
can be seen in Figure 8, the performance of LAM-
BADA remains almost unchanged, demonstrating
robustness to lexical and templatic variations.

6 Conclusion and Future Directions

We developed LAMBADA, an algorithm for deduc-
tive logical reasoning with natural language that
combines the capacity of LMs to handle natural-
istic text input with the backward chaining algo-
rithm for robust symbolic reasoning. We showed
that LAMBADA achieves significant improvements
over competitive approaches on challenging bench-
marks, both in terms of label accuracy (predicting
if a statement can be proved or disproved based
on a theory) and proof accuracy. Importantly, this
improvement was also observed in a dataset that ex-
presses the theory in more naturalistic expressions,
clearly illustrating the benefit of combining an LM
with reasoning modules. We also demonstrated the
query efficiency and lexical robustness of LAM-
BADA. Although in this paper we only experiment
with formal reasoning problems and datasets, we
believe our key insight on the efficacy of backward,
goal-directed reasoning with LMs has broader im-
plications and can be adapted to other NLP tasks
where multi-step inference is required.
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Limitations

We identify some limitations and risks with our
current work that can be addressed in future work.
• The current work is mainly applicable to log-

ical entailment problems, where one needs to
solve a classification problem of whether a goal
can be proved, disproved, or neither proved nor
disproved based on a theory. Future work can
extend LAMBADA to non-classification cases,
e.g., where one needs to apply logical reasoning
to answer questions such as “What color is
Fiona?”.

• The current work assumes all the rules are given
as input and the rule set is small enough to be
included in the prompt. Future work can extend
LAMBADA to the cases where not all the rules
are provided as input and part of the knowledge
has to come from the LM itself, as well as the
case where not all the rules can be included in
the prompt due to the limitation in the prompt
length.

• The current work is limited to deductive reason-
ing with the modus ponens rule; future work
can expand the applicability of LAMBADA on
datasets with other types of rules such as proof
by contradiction, disjunction elimination, etc.

• The calls made to the LM modules in LAMBADA

are dependent on the value from the previous call.
That is, we need to wait for the results from one
call before we decide what the next call must be.
Since making batch calls to the LMs is typically
easier and faster, future work can find ways to
implement LAMBADA with batch LM calls.

• While we showed that LAMBADA is more effi-
cient than SI in terms of the number of inference
calls it makes to the LM, it still requires many
more calls to the LM compared to approaches
such as CoT, hence increasing the required com-
putation and cost.
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Facts:
1. Anne is cold. 
2. Anne is kind. 
3. Charlie is nice. 
4. Dave is white. 
5. Dave is young. 
6. Fiona is blue. 
7. Fiona is white.
Rules:
1. If Dave is green and Dave is white 

then Dave is blue. 
2. If something is green then it is nice. 
3. If something is blue and cold then it 

is green. 
4. If something is white and young 

then it is kind. 
5. If something is cold then it is blue. 
6. All nice, kind things are green. 
7. All kind, cold things are white. 
8. If something is kind and young then 

it is cold.
Goal:

● Dave is not green.

Dave is not green.

Fact Check
Fail

Rule Selection
Rule6

Decompose

Fact Check
Dave is kind.

Dave is nice.

Fail
Rule Selection

Rule2
Decompose

Dave is green.
Fact Check

Fail
Rule SelectionRule6Decompose

Decompose

Dave is nice. Dave is kind.

Stop: Cycle 
Detected

Rule3
Decompose

Fact Check

Dave is blue. Dave is cold.

Fail
Rule Selection

Rule5
Decompose

Dave is cold.
Fact Check

Fail
Stop: Max 

Depth Reached

Rule3

Dave is blue. Dave is cold.

Fact Check

Rule Selection
Fail

Rule5
Decompose

Dave is cold.
Fact Check

Fail
Rule Selection

Rule8
Decompose

Fact Check Fact Check

Dave is kind. Dave is young.

Fail
Rule Selection

Rule4
Decompose

Fact Check Fact Check
Dave is white. Dave is young.

Already 
Proved

Already 
Proved

Stop: Other 
branch failed

Stop: Other 
branch failed

Stop: Other 
branch failed

Figure 9: The search trace of LAMBADA on an example from ProofWriter with depth=5 where the answer was
predicted correctly. The sign agreement module has been omitted for brevity. The modules color-coded with blue
represent the calls where the module retrieved the value from the cache instead of calling the LM.

A Caching and Avoiding Loops for
LAMBADA

Since LAMBADA is a recursive algorithm, during
the proof of an example Algorithm 1 may be called
with the same goal multiple times. For instance,
consider the goal “Eric is nice” for the theory in
Figure 1. Applying Rule6 breaks the goal into three
sub-goals. The first one is “Eric is big” which
is proved using the Fact Check module. For the
second sub-goal, Rule3 is used to compose it into
three sub-goals the first of which we have proved
before. Since we have already proved this sub-goal,
we can save a Fact Check call if we cache previous
results.

Note that the result of a call to LAMBADA can be
different depending on the input max depth. For ex-
ample, the algorithm may return UNKNOWN when
called for the theory and goal in Figure 1 with max
depth 0, and return PROVED when called with max
depth 3. Specifically, if we can prove/disprove a
goal at depth d, we can conclude that it can be
proved/disproved at depths ≥ d as well and we can
get the value from the cache. Moreover, if the algo-
rithm returns UNKNOWN for a goal at depth d, we
can conclude that it will also return UNKNOWN at
depths < d. Therefore, if the algorithm is called for
a theory and goal at depth d, we also check other
depths to see if we have the results for other depths
that apply to this case. Besides having a cache for
the entire algorithm that avoids redundant compu-

tations when the truth of a goal has been previously
computed for a theory, each individual module can
also have its own cache as it is possible that the
module is called for the same theory and goal. We
show one such example in Figure 9 (to be discussed
in Section B).

LAMBADA may sometimes run into loops.
For example, to prove a (sub-)goal “Fiona is
round?”, after recursively identifying rules that
unify with it and decomposing it into sub-goals,
the algorithm may arrive at a point where it needs
to prove the “Fiona is round?” sub-goal, which
is equivalent to the initial goal. To avoid such loops,
for each path in the proof trace, we keep track of
the (sub-)goals that are to be proved and stop fur-
ther exploring that branch of the search trace when
a loop is identified.

Note that in Algorithm 1, for clarity of the al-
gorithm we did not include the caching and loop
avoidance operations. Also note that caching and
loop avoidance mainly help with reducing the num-
ber of inference calls.

B Additional Results and Analyses

In this section, we provide some more in-depth
qualitative and quantitative analysis of the results
from our model and the baselines.

B.1 Qualitative Analysis
In Figure 9, we provide the search trace of LAM-
BADA for an example in ProofWriter (Depth-5) for
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Facts: The bald eagle is green. The bald eagle is young. The bald eagle sees the dog. The bear likes the dog. The bear needs the cow. The 
cow needs the dog. The cow sees the dog. The dog is blue. The dog is green. The dog is young. The dog needs the bear. The dog needs the 
cow.
Rules:If someone sees the bald eagle and they are nice then the bald eagle needs the bear. If someone is nice and young then they need 
the dog. If someone likes the cow and the cow needs the dog then the cow is kind. If someone is young and blue then they like the bear. If 
someone is blue and they like the bear then the bear likes the cow. If someone is green and they need the bear then they need the dog. If 
someone sees the bear then they are nice. If someone is kind then they see the bear.
Question: The bear likes the cow.
CoT Inference: Since the facts state that the bear likes the cow so the statement the bear likes the cow is true.

Facts: [...] The bear sees the mouse. The lion chases the squirrel. The lion is blue. The mouse is big. [...]
Rules: If someone likes the mouse and they are blue then they are red. If someone is blue then they see the mouse. If the lion sees the 
squirrel and the lion is blue then the lion chases the mouse. If someone chases the bear then they see the squirrel. If someone sees the bear 
then the bear likes the squirrel. If someone is young and they see the bear then they chase the mouse. If someone sees the mouse then they 
chase the bear. If someone is blue and they chase the mouse then they are young.
Question: The bear does not see the squirrel.
CoT Inference: Since the facts state that the bear sees the mouse and the rules state that if someone sees the mouse then they chase the 
bear so we can add to the facts that the bear chases the mouse. Since the facts state that the bear chases the mouse and the rules state that 
if someone chases the mouse then they see the squirrel so we can infer that the statement the bear does not see the squirrel is false.

Facts: Anne is round. Anne is young. Charlie is green. Charlie is round. Charlie is young. Erin is big. Erin is green. Erin is round. Erin is 
young. Harry is nice. Harry is white.
Rules: All young, white things are round. If something is nice and green then it is white. Cold things are round. Young, green things are nice. 
If something is big and green then it is nice. White, nice things are young. All green things are cold. White, round things are green. All cold, 
round things are big.
Question: Charlie is not nice.
CoT Inference: Since the facts state that Charlie is green and the rules state that if something is green and nice then it is white so we can 
infer that Charlie is white. [...] so we can infer that Charlie is nice and the statement Charlie is not nice is false.

Facts: Anne is blue. Anne is nice. Anne is quiet. Anne is rough. Anne is white. Bob is big. Charlie is rough. Erin is big. Erin is nice. Erin is 
young.
Rules: Quiet, nice things are white. If something is rough then it is quiet. If Bob is white then Bob is young. If Anne is big and Anne is blue 
then Anne is rough. If Bob is rough and Bob is quiet then Bob is nice. Big things are rough. If Erin is nice and Erin is young then Erin is big.
Question: Erin is not nice.
Inference: Since the facts state that Erin is nice [...] Since the facts state that Erin is rough and the rules state that if something is rough then 
it is quiet so we can infer that the statement Erin is not nice is false.

Figure 10: Examples of wrong CoT proof chains from four different categories. The erroneous part is marked in
red.

which LAMBADA correctly predicted that the goal
is disproved based on the theory. We deliberately
selected an example with a large search trace to
demonstrate the various aspects of LAMBADA.

LAMBADA starts by calling the Fact Check mod-
ule on the goal which fails to prove or disprove
it. So Rule Selection is called which identifies two
rules that can be applied: Rule3 and Rule6. Since
Rule6 is shorter, the reranker ranks it higher; LAM-
BADA starts with this rule and calls the Goal De-
composition module which breaks the goal into
two sub-goals: “Dave is nice.” and “Dave
is kind.”. Starting with the first sub-goal, Face
Check fails on it so Rule Selection is called which
selects Rule2 and Goal Decomposition decomposes
the sub-goal into “Dave is green.”.

Note that if the cycle checking was smart enough
to understand that this sub-goal is the negation
of the root goal, we could stop further searching
this branch. However, we currently only do cy-
cle matching for exact matches so the algorithm
continues the search trace.

Fact Check fails again so Rule Selection is called
which selects Rule3 and Rule6 again, and since
Rule6 is shorter the algorithm continues with that

rule. Goal Decomposition breaks the sub-goal into
“Dave is nice.” and “Dave is kind.”. Con-
sidering the first sub-goal, the algorithm identifies
a cycle and stops the search. The second sub-goal
is also ignored as there is a conjunction between
the sub-goals.

The algorithm then continues with calling Goal
Decomposition for Rule3 which breaks the sub-
goal into “Dave is blue.” and “Dave is cold.”.
Starting with the first sub-goal, since Fact Check
fails the algorithm calls Rule Selection which se-
lects Rule5 and Goal Decomposition breaks the
sub-goal into “Dave is cold.”. Face Check fails
on this sub-goal and since the maximum depth is
reached, the algorithm stops expanding this branch.
Moreover, the branch for “Dave is cold.” is no
longer pursued because there was a conjunction
between the sub-goals and one of them failed.

Moving on to the right branch in Figure 9, the
algorithm calls the Goal Decomposition module
for the goal and Rule3. Since we have previously
computed it, the sub-goals “Dave is blue.” and
“Dave is cold.” are returned from the cache.
Fact Check is called on “Dave is blue.” and
since it has been computed before, the result (fail-
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ure) is retrieved from the cache. The Rule Selection
module is called, where the result (Rule5) is again
retrieved from the cache. Goal Decomposition is
then called and the sub-goal “Dave is cold.” is
retrieved from the cache. Fact Check fails again
(retrieved from the cache), Rule Selection selects
Rule8 and Goal Decomposition produces two sub-
goals: “Dave is kind.” and “Dave is young.”.
For “Dave is kind.”, Fact Check fails, Rule Se-
lection selects Rule4 and Goal Decomposition pro-
duces two sub-goals: “Dave is white.” and
“Dave is young.”. For both of these sub-goals,
Fact Check succeeds in proving them. The algo-
rithm then also checks “Dave is young.” for the
right branch, but since this sub-goal has already
been proved, it just gets the result from the cache.
The algorithm then checks “Dave is cold.” for
the rightmost branch, but since this sub-goal has
already been proved, it just gets the result from the
cache.

The model also calls the Sign Agreement module
for rules on the right branch (not shown in the
Figure) and finds out that the sign of the rules and
the sub-goals agree for all cases, except for the very
first rule selected (Rule3) so it correctly concludes
that the goal is disproved.

B.2 Further Analysis of CoT

In Figure 2(e), we observed that CoT mostly pro-
duces wrong proof chains even when the predicted
label is correct. Through manually analyzing 50
examples for which CoT predicted the correct la-
bel, we identified three dominant reasons for the
chains being wrong: 1- hallucinating rules or facts,
2- not understanding conjunction, and 3- making
invalid derivations. In Figure 10, we show failure
examples from each category. Notice that, e.g., in
the example with a hallucinated rule, CoT relies
on a rule “if someone chases the mouse then
they see the squirrel” which not only does
not appear in the provided set of rules, but cannot
even be derived with a combination of the rules.

The high label accuracy of CoT and its low proof
accuracy on ProofWriter-PD hint at the possibility
of spurious biases that can be exploited by CoT. For
example, we found that in 9.2% of the examples
which require 1+ reasoning hops, the consequent
of one of the rules in the theory is the same as
the goal to be proved, and for 98.9% of these ex-
amples the label is PROVED. In several of these
examples, CoT simply concluded that the goal can

be proved in 0 hops based on a hallucinated fact.
Moreover, the existence of the word “not” in the
goal is highly predictive of the label: goals hav-
ing “not” are mostly DISPROVED and goals not
having “not” are mostly PROVED. The PUD case
solves the latter issue to a large extent as the la-
bel for a good portion of the examples with or
without “not” in UNKNOWN. The spurious cor-
relations also explain the fluctuations in the CoT
performance across different depths, as the perfor-
mance depends on how much those correlations
appear in the few-shot demonstrations.

We reiterate that for SI and LAMBADA, such
spurious correlations between the input and the
label cannot be exploited because the intermediate
modules are impervious to the correlations between
the input and the label.

B.3 Forward Chaining Becomes
Progressively More Difficult

Algorithms such as SI that are based on forward
chaining require a combinatorial search of the the-
ory to find the right subset of facts and rules in each
step of the reasoning. The search space becomes
progressively larger as the algorithm makes new
inferences and those inferences are added back to
the theory. For example, if the initial size of the
theory (i.e. the number of facts plus the number of
rules) is |C|, when making the k-th inference the
size of the theory is |C|+ k − 1.

Conceptually, as the model produces more in-
ferences, the distance to the goal (in terms of the
number of hops remaining between the goal and
the facts) should reduce and so the later inferences
should be more accurate. However, we hypothe-
size that the increase in the size of the theory (and
hence the size of the search space) may result in
lower success rates in the later inferences of the SI
model. To verify this experimentally, we further
analyzed the results of SI on depth-5 of PrOntoQA
as follows. We extracted the subset of examples
where the label was PROVED but SI failed to find
a proof (these are examples where at least one of
the inferences is not on the proof chain). Then, as
a proxy for measuring the responsibility of the k-th
inference of the model for the failure, we measured
the percentage of times the k-th inference was on
the proof chain (the proof chain for each test ex-
ample is provided as part of the dataset). Notice
that it is possible that, e.g., the first inference is not
on the proof chain, but the rest of the inferences
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Figure 11: Confusion matrices.

are. The results are reported in Figure 3 in the main
text. The results show that the chance of producing
inferences that are on the proof chain progressively
decreases in the later inferences of the model where
the size of the input theory (and hence the search
space) is larger.

B.4 Confusion Matrices
We reported the overall model accuracies in the
main text. Here, we report finer-grained confusion
matrices that help better understand the biases of
the model. Figure 11 reports the confusion matrices
for our datasets. According to the results, we ob-
serve that whenever LAMBADA predicts PROVED

or DISPROVED, the prediction is mostly correct.
The accuracy is slightly more on cases where the

prediction is PROVED than DISPROVED. We be-
lieve this is because DISPROVED cases typically
involve negation that makes the reasoning more
complex. However, there are several examples
for which the label is PROVED or DISPROVED,
whereas the model predicts UNKNOWN.

CoT and SI also show similar behaviour as LAM-
BADA on ProofWriter-PUD but with a larger bias
toward prediction UNKNOWN. Moreover, SI shows
a large tendency toward predicting DISPROVED for
PrOntoQA.

B.5 Lexical Sensitivity Analysis
To analyze the lexical sensitivity of LAMBADA,
we created a new test for ProofWriter-PUD which
contains tokens that do not appear in demonstra-
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Figure 12: The performance of LAMBADA on ProofWriter-PUD for (a) the original and the novel token test sets,
(b) the original and the novel template test sets. The results show that LAMBADA is robust to lexical and template
modifications.

tion examples. Specifically, we manually created
a pool of entity names, animal names, adjectives,
and verbs (all of them previously not appearing in
the ProofWriter dataset) and then made the follow-
ing modifications for each example: 1- identified
all entity names and mapped each entity name to
a randomly selected name from the pool, 2- iden-
tified all animals and mapped each of them to a
randomly selected animal from the pool, 3- iden-
tified all adjectives and mapped each of them to
a randomly selected adjective from the pool, and
4- identified all verbs and mapped each of them
(except the to be verbs) to a randomly selected verb
from the pool. As an example, dog may be mapped
to bison in one example and to camel in another.
Then, using the same few-shot examples as before,
we tested the performance of LAMBADA on this
modified test set and compared the results to the
original test set.

We also analyzed the sensitivity to the tem-
plates used for the rules. Toward this goal, we
identified the templates used for the rules in the
ProofWriter dataset and replaced each template
with another template (previously not appearing in
the ProofWriter dataset). For example, we changed
the template “[X] things are [Y]” to “It is a
truth that [X] things are always [Y] as
well”. Then, using the same few-shot examples as
before, we tested the performance of LAMBADA

on this modified test set and compared the results
to the original test set.

We repeated the aforementioned experiments
twice for each analysis each time using a differ-
ent set of tokens/templates. The results in Figure 8
in the main text demonstrate the average accuracy
across two runs. The results for individual runs are
presented in Figure 12(a), (b) for the two analyses

respectively. According to the results, while we
observe some variations in the total accuracy (for
some depths the performance goes slightly down
and for some depths goes slightly up), the perfor-
mance stays in the same ballpark, showing the ro-
bustness of LAMBADA. Moreover, comparing the
results on the modified test set with those of the
baselines reported in the main text, we observe that
even on this modified test set, LAMBADA performs
significantly better than the baselines tested on the
original test set.

C Combinatorial Search Issue in
Forward Chaining

Consider a simple fictional theory with the follow-
ing facts:
[Anne is cold., Anne is nice and pink., Anne
is kind., Anne is green., Anne is big and
young., Anne is rough., Anne is round.]
the following rules:
[Cold, red people are white., Nice, blue
people are white., Kind, green people are
white., Cold, round people are white., Big,
green people are white.]
and the goal “Anne is white.”. An approach
based on forward chaining requires selecting a sub-
set of the facts and rules from the theory from
which this goal can be proved. Specifically, it needs
to select “Anne is cold.”, “Anne is round.”,
and Cold, round people are white. from the
theory. Such a selection requires a combinatorial
search where different combinations of facts and
rules should be tested to see which one can lead to
proving the goal. An LM may fail to search this
space effectively in a single inference call.

SI uses an approximation to reduce the search
space: it first makes an inference call to an LM to
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select one fact/rule, then it makes another inference
call to select the next fact/rule based on the first
one, and continues to make inference calls until
a halting criterion is met. This approximation re-
duces the search space from a combinatorial space
to a linear space. Since the facts/rules are not se-
lected jointly, however, the chances of selecting the
wrong combinations of facts and rules increase be-
cause repairing a wrong first choice is not possible,
and this leads to low performance as evidenced in
our experimental results.

With a backward chaining approach such as
LAMBADA, on the other hand, no combinatorial
search (or approximations to it) is required: the
Rule Selection module verifies each rule indepen-
dently to see which one is applicable (i.e. a lin-
ear scan), the Goal Decomposition module breaks
goals into sub-goals based on each selected rule
independently of the other selected rules, and the
Fact Check module verifies the existence of a fact
that entails or contradicts the goal with a linear
search over the facts.

D Implementation Details

For our experiments, we used the PaLM 540B
model (Chowdhery et al., 2022) for all the models
(both LAMBADA and the baselines) served on a
4× 4 TPU v4 architecture. The decoding tempera-
ture was set to zero. For testing CoT on PrOntoQA,
we used the same demonstration examples as the
original work but slightly changed the wording by
adding conjunctive words such as “Since” and “So”
to make the chains have a better flow. The reason
for this modification was that we found when work-
ing with PaLM, prompts that have a better flow
result in better predictions. This can be viewed
from Figure 13 where we compare the performance
for the original prompts vs. the prompts with the
conjunctive words added. It can be viewed that
while the latter slightly underperforms on Depth-1
(where the reasoning flow is not as important), it
substantially improves the results for higher depths
(especially Depth-5). For ProofWriter, we wrote
similar few-shot examples.

For SI, we used the same demonstration exam-
ples as in the original work for ProofWriter; for
PrOntoQA we wrote few-shot examples following
a similar pattern to those for ProofWriter. For each
dataset depth we used/wrote specific few-shot ex-
amples (e.g., when working with a subset of the
data that has examples requiring at most k hops

of reasoning, our CoT demonstrations also require
only k hops of reasoning), except for ProofWriter
Depth-5 where, following the original work, we
used it for testing length-generalization and only
included examples with chains up to 3 hops. For
running CoT on ProofWriter-PUD, we included
extra few-shot examples where the label is UN-
KNOWN; the explanation for these examples is that
the goal cannot be proved or disproved with a com-
bination of the facts and the rules. For running
SI on ProofWriter-PUD, after obtaining the infer-
ences by running SI, we give the inferences and
the goal to our Fact Check module which decides
if the goal can be proved, disproved, or neither.
Since ProofWriter-PD and PrOntoQA are binary
datasets but LAMBADA makes three-way predic-
tions (PROVED, DISPROVED, and UNKNOWN), to
test LAMBADA on these datasets, similar to SI we
combine the UNKNOWN and DISPROVED predic-
tions into one class.

D.1 Datasets for Individual Module
Evaluation

For creating datasets for measuring the perfor-
mance of individual modules in LAMBADA, we
proceeded as follows. For Fact Check, we ran-
domly selected 100 examples from the Depth-0 ex-
amples. We count a model prediction to be correct
if it produces the same label as the one specified
in the ProofWriter dataset. For Rule Selection, we
randomly selected 100 examples and manually enu-
merated every rule whose consequent unifies with
the goal. A model prediction is considered cor-
rect if it predicts all such rules correctly. For Goal
Decomposition, we randomly selected 100 rules
and goals such that the consequent of the rule uni-
fies with the goal and then manually wrote the sub-
goals. A model prediction is considered correct if it
predicts all the sub-goals correctly. For Sign Agree-
ment, we re-used the same examples from the Goal
Decomposition module and manually labeled them
with respect to their sign agreement/disagreement.

D.2 Quality Issues in ParaRules
We found the ParaRules dataset to has a high
amount of variation in the text, in the facts, and
in the rules thus making it a valuable benchmark
for evaluating text-based logical reasoning. We
also found a few quality issues in the ParaRules
dataset that were introduced when annotators con-
verted facts and rules into natural language form.
Here, we describe some of the main issues that we
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Figure 13: CoT results on PrOntoQA with the original
prompts vs. the prompts with conjunctive words added
to make the sentences flow better.

found and fixed.
• Changing antecedents and consequents: We

found that in some cases where the rule was “X
and Y imply Z”, the natural language version of
the rule produced by annotators was written as if
“X implies Y and Z” or “X implies Y or Z”.
As an example, the rule “Cold, nice people
are red.” was written in natural language
form as “Some cold people can be nice
at times,and red at at other times.”.
For such cases, we modified the text to make the
antecedents and consequent match the original
rule.

• Introducing new antecedents: In some cases,
the annotator introduced new antecedents in the
rule. For example, for a rule where the an-
tecedents were “green”, “red” and “rough”,
the annotator added another antecedent “naive”
(“If someone is green and naive ...”). For
such cases, we removed the extra antecedents.

• Turning general rules to specific ones: In
some cases, the natural language version of a
general rule was written for only a specific entity.
For example the rule “Rough, young, green
people are very round.” was written as “Tom
is a rough, young person to know ...”.
We removed the specific entities and made the
rule generally applicable.

• Introducing pronouns: For some of the facts,
we found that the annotator replaced the name of
the entity with a pronoun. As an example, “Dave
is ...” was annotated as “He is ...”. We
replaced the pronouns with the original entity
name in the theory.

D.3 Prompts
We provide an overview of the prompts we used
for each of the four components of our model for
the ProofWriter dataset.

Algorithm 3 FactCheck
Input: Facts F , Goal G, Number of trials
n

1: for n times do do
2: f = FactSelection(F , G)
3: result = FactVerifier(f, G)
4: if result 6= UNKNOWN then
5: return result
6: F = F − f
7: return UNKNOWN

Algorithm 4 RuleSelection
Input: RulesR, Goal G

1: I = RuleImplications(R)
2: selected = SelectRules(I, G)
3: return selected

The pseudo-code for the Fact Check module is
provided in Algorithm 3. For selecting a fact in
Fact Check, our prompt looks like the following:

Example 1
Fact1: <FACT1> Fact2: <FACT2> ...

Factn: <FACTn>
Question: <QUESTION>
Inference: For the question <QUESTION>

the most relevant fact is Facti (<FACTi>).
...
Example K
Fact1: <FACT> Fact2: <FACT> ... Factm:

<FACT>
Question: <QUESTION>
Inference:

For verifying if the goal/question can be de-
rived from the selected fact, we use the following
prompt:
Example 1
Fact: <FACT>
Question: <QUESTION>
Inference: The fact <FACT> [X1] the

question <QUESTION> so [X2].
...
Example K
Fact: <FACT>
Question: <QUESTION>
Inference:

In the case where the goal can be proved from the
fact, we replace [X1] with “is equivalent to”
and [X2] with “so the answer is "yes"”. In
the case where the goal can be disproved from the
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fact, we replace [X1] with “is the negation of”
and [X2] with “so the answer is "no"”. And
in the case where the goal can neither be proved
nor disproved, we replace [X1] with “is neither
equivalent nor the negation of” and [X2]
with “so the question cannot be inferred
from the fact”.

The pseudo-code for the Rule Selection module
is provided in Algorithm 4. For finding the implica-
tion/consequent of the rules, we use the following
prompt:
Example 1
Rule1: <RULE1>, Rule2: <RULE2> ...

Rulen: <RULEn>
Inference: Rule1 implies [X1], . . . ,

Rulen implies [Xn].
...
Example K
Rule1: <RULE1>, Rule2: <RULE2> ...

Rulem: <RULEm>
Inference:

[Xi]s depend on the consequent of each rule.
For rules such as “Rough, nice people are
red.” we write [Xi] as “(is; red)”, and for
rules such as “If the cat chases the dog
then the cat sees the dog.” we write [Xi]
as “(cat; chase; dog)”.

For rule selection based on the implications, we
use the following prompt:
Example 1
Rule1 implies <IMLP1>, Rule2 implies

<IMPL2>, ..., Rulen implies <IMPLn>
Question: <QUESTION>
Inference: The question is about

<IMPLq>: Rule1 <IMPL1> [X1] <IMPLq>, . . . ,
<IMPLn> [Xn] <IMPLq>.

...
Example K
Rule1 implies <IMLP1>, Rule2 implies

<IMPL2>, ..., Rulem implies <IMPLm>
Question: <QUESTION>
Inference:

where each [X1] is either “is applicable to“
or “not applicable to“ depending on whether
the rule can be applied or not.

For goal decomposition, we use the following
prompt:
Example 1
Rule: <Rule>

Question: <QUESTION>
Inference: The question subject is

<SUBJq> and the rule premises are <PRM>*,
so the question breaks down to <SUBQ>*.
...
Example K
Rule: <RULE>
Question: <QUESTION>
Inference:

where <SUBJq> indicates the subject of the ques-
tion, <PRM>* indicates the premises/antecedents in
the rule (the * indicates that there might be multiple
premises), and <SUBQ>* indicates the sub-goals.

Finally, for sign agreement, we use the following
prompt:
Example 1
Rule: <Rule>
Question: <QUESTION>
Inference: The rule implication <IMLPr>

is [Xr], the question <IMPLq> is [Xq],
so signs [Xd].
...
Example K
Rule: <RULE>
Question: <QUESTION>
Inference:

where <IMLPr> shows the implication of the
rule and <IMPLq> indicates the implication of the
question. [Xr] and [Xq] are either “positive“
or “negated“ depending on the sign of the im-
plication. [Xd] is either “agree“ or “disagree“
depending on whether the signs agree or not.
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