32 research outputs found

    Nutrigenomic Functions of PPARs in Obesogenic Environments

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments.This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities

    Adiponectin is Associated with Impaired Fasting Glucose in the Non-Diabetic Population

    Get PDF
    OBJECTIVES: Adiponectin is strongly associated with diabetes in the Western population. However, whether adiponectin is independently associated with impaired fasting glucose (IFG) in the non-obese population is unknown. METHODS: The serum adiponectin, insulin resistance (IR), and waist circumference (WC) of 27,549 healthy Koreans were measured. Individuals were then classified into tertile groups by gender. IFG was defined as a fasting serum glucose of 100-125 mg/dL without diabetes. IR was calculated using the homeostasis model assessment of insulin resistance (HOMA-IR). The association of adiponectin and IFG was determined using logistic regression analysis. RESULTS: WC and adiponectin were associated with IFG in both men and women. However, the association of WC with IFG was attenuated in both men and women after adjustment for the HOMA-IR. Adiponectin was still associated with IFG after adjustment for and stratification by HOMA-IR in men and women. Strong combined associations of IR and adiponectin with IFG were observed in men and women. Multivariate adjusted odds ratios (ORs) (95% confidence interval [CI]) among those in the highest tertile of IR and the lowest tertile of adiponectin were 9.8 (7.96 to 12.07) for men and 24.1 (13.86 to 41.94) for women. CONCLUSION: These results suggest that adiponectin is strongly associated with IFG, and point to adiponectin as an additional diagnostic biomarker of IFG in the non-diabetic population.ope

    Nutrigenomic Functions of PPARs in Obesogenic Environments

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments.This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities

    Measuring patient acuity and nursing care needs in South Korea: application of a new patient classification system

    Get PDF
    Background An accurate and reliable patient classification system (PCS) can help inform decisions regarding adequate assignments for nurse staffing. This study aimed to evaluate the criterion validity of the Asan Patient Classification System (APCS), a new tertiary hospital-specific PCS, by comparing its rating and total scores with those of KPCS-1 and KPCS-GW for measuring patient activity and nursing needs. Methods We performed a retrospective analysis of the medical records of 50,314 inpatients admitted to the general wards of a tertiary teaching hospital in Seoul, South Korea in March, June, September, and December 2019. Spearman’s correlation and Kappa statistics according to quartiles were calculated to examine the criterion validity of the APCS compared with the KPCS-1 and KPCS-GW. Results The average patient classification score was 28.3 points for APCS, 25.7 points for KPCS-1, and 21.6 points for KPCS-GW. The kappa value between APCS and KPCS-1 was 0.91 (95% CI:0.9072, 0.9119) and that between APCS and KPCS-GW was 0.88 (95% CI:0.8757, 0.8810). Additionally, Spearman's correlation coefficients among APCS, KPCS-1, and KPCS-GW showed a very strong correlation. However, 10.8% of the participants’ results were inconsistent, and KPCS-1 tended to classify patients into groups with lower nursing needs compared to APCS. Conclusion This study showed that electronic health record-generated APCS can provide useful information on patients’ severity and nursing activities to measure workload estimation. Additional research is needed to develop and implement a real-world EHR-based PCS system to accommodate for direct and indirect nursing care while considering diverse population and dynamic healthcare system

    The antioxidant and chemopreventive potentialities of Mosidae (Adenophora remotiflora) leaves

    Get PDF
    Our study focused on the antioxidant activities of Mosidae leaf ethanol extract (MLE) and included measurements of reducing power, total phenolic compounds, DPPH radical scavenging activity, and hydroxyl radical scavenging activity. In order to determine whether or not MLE evidences any chemopreventive activities, experimental lung metastasis was induced via the i.v. inoculation of colon26-M3.1 carcinoma cells into BALB/c mice. Additionally, we attempted to characterize any possible cytotoxic effects in murine normal splenocytes and tumor cells (B16-BL6 and colon26-M3.1). The total phenolic content and reducing capacity were measured at 39 mg/100 mL and 1.24, respectively, whereas the DPPH and hydroxyl radical scavenging activities of MLE were measured to be 88.89% and 22.10%, respectively. Prophylactic i.v. treatment with MLE resulted in a dose-dependent and significant inhibition of lung metastasis. Specifically, a MLE dose of 200 ug per mouse resulted in an 88.90% inhibition of lung metastasis. For the cytotoxicity assay, MLE doses up to 100 ug/mL were not shown to affect the growth of normal murine splenocytes. Additionally, the survival of normal cells was not affected at MLE doses below 500 ug/mL. However, MLE doses up to 500 ug/mL reduced the percentage of tumor cell growth for B16BL6 (67% alive) and colon26-M3.1 (62% alive) cells

    Study design and rationale of "Synergistic Effect of Combination Therapy with Cilostazol and ProbUcol on Plaque Stabilization and Lesion REgression (SECURE)" study: a double-blind randomised controlled multicenter clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probucol, a cholesterol-lowering agent that paradoxically also lowers high-density lipoprotein cholesterol has been shown to prevent progression of atherosclerosis. The antiplatelet agent cilostazol, which has diverse antiatherogenic properties, has also been shown to reduce restenosis in previous clinical trials. Recent experimental studies have suggested potential synergy between probucol and cilostazol in preventing atherosclerosis, possibly by suppressing inflammatory reactions and promoting cholesterol efflux.</p> <p>Methods/design</p> <p>The Synergistic Effect of combination therapy with Cilostazol and probUcol on plaque stabilization and lesion REgression (SECURE) study is designed as a double-blind, randomised, controlled, multicenter clinical trial to investigate the effect of cilostazol and probucol combination therapy on plaque volume and composition in comparison with cilostazol monotherapy using intravascular ultrasound and Virtual Histology. The primary end point is the change in the plaque volume of index intermediate lesions between baseline and 9-month follow-up. Secondary endpoints include change in plaque composition, neointimal growth after implantation of stents at percutaneous coronary intervention target lesions, and serum levels of lipid components and biomarkers related to atherosclerosis and inflammation. A total of 118 patients will be included in the study.</p> <p>Discussion</p> <p>The SECURE study will deliver important information on the effects of combination therapy on lipid composition and biomarkers related to atherosclerosis, thereby providing insight into the mechanisms underlying the prevention of atherosclerosis progression by cilostazol and probucol.</p> <p>Trial registration number</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT01031667">NCT01031667</a></p

    RMR-Related <i>DNAJC6</i> Expression Suppresses Adipogenesis in 3T3-L1 Cells

    No full text
    Obesity causes various complications such as type 2 diabetes, hypertension, fatty liver, cardiovascular diseases, and cancer. In a pilot GWAS study, we screened the DNAJC6 gene which is significantly related to the resting metabolic rate (RMR) in childhood obesity. With DNAJC6-overexpressed 3T3-L1 cells (TgHsp), we investigated the new obesity mechanism caused by an energy imbalance. After differentiation, lipid droplets (Oil red O staining) were not formed in TgHsp cells compared to the control. TgHsp preadipocyte fibroblast morphology was also not clearly observed in the cell morphology assay (DAPI/BODIPY). In TgHsp cells, the expression of PPARγ, C/EBPα, and aP2 (adipogenesis-related biomarkers) decreased 3-, 39-, and 200-fold, respectively. The expression of the adipokines leptin and adiponectin from adipose tissues also decreased 2.4- and 840-fold, respectively. In addition, the levels of pHSL(Ser563) and free glycerol, which are involved in lipolysis, were significantly lower in TgHsp cells than in the control. The reduction in insulin receptor expression in TgHsp cells suppressed insulin signaling systems such as AKT phosphorylation, and GLUT4 expression. Degradation of IRS-1 in 3T3-L1 adipocytes was caused by chronic exposure to insulin, but not TgHsp. Mitochondrial functions such as oxygen consumption and ATP production, as well as proton leak and UCP1 protein expression, decreased in TgHsp cells compared to the control. Moreover, autophagy was observed by increasing autophagosomal proteins, LC3, on Day 8 of differentiation in TgHsp cells. Through our first report on the DNAJC6 gene related to RMR, we found a new mechanism related to energy metabolism in obesity. DNAJC6 expression positively suppressed adipogenesis, leading to the subsequent resistance of lipolysis, adipokine expression, insulin signaling, and mitochondrial functions

    Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle: In Vitro and In Vivo Model

    No full text
    Laminaria japonica (LJ) and Hizikia fusiforme (HF) are brown seaweeds known to have various health-promoting effects. In this study, we investigated the anti-diabetic effects and possible mechanism(s) of LJ and HF by using both in vitro and in vivo models. C2C12 myotubes, mouse-derived skeletal muscle cells, treated with LF or HF extracts were used for the in vitro model, and muscle tissues from C57BL/6N mice fed a high-fat diet supplemented with 5% LF or HF for 16 weeks were used for the in vivo model. Although both the LF and HF extracts significantly inhibited &alpha;-glucosidase activity in a dose-dependent manner, the HF extract had a superior &alpha;-glucosidase inhibition than the LF extract. In addition, glucose uptake was significantly increased by LJ- and HF-treated groups when compared to the control group. Phosphorylation of protein kinase B and AMP-activated protein kinase was induced by LJ and HF in both the vivo and in vitro skeletal muscle models. Furthermore, LJ and HF significantly decreased tumor necrosis factor-&alpha; whereas both extracts increased interleukin (IL)-6 and IL-10 production in lipopolysaccharide-stimulated C2C12 myotubes. Taken together, these findings imply that the brown seaweeds LJ and HF could be useful therapeutic agents to attenuate muscle insulin resistance due to diet-induced obesity and its associated inflammation

    Nutrigenomic Functions of PPARs in Obesogenic Environments

    No full text
    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments. This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities
    corecore