64 research outputs found

    Strategic white matter hyperintensity locations associated with post-stroke cognitive impairment:A multicenter study in 1568 stroke patients

    Get PDF
    Background: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse cognitive outcome after stroke, but the role of WMH location in this association is unclear.Aims: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke.Methods: Individual patient data from nine ischemic stroke cohorts with magnetic resonance imaging (MRI) were harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, primarily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus.Results: The total study sample consisted of 1568 patients (39.9% female, mean age = 67.3 years). Total WMH volume was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic radiation was significantly associated with cognitive performance on attention and executive functioning and information processing speed and WMH volume in the forceps major with information processing speed. The multivariable lasso regression showed that these associations were independent of age, sex, education, and total infarct volume and had larger coefficients than total WMH volume.Conclusion: These results show tract-specific relations between WMH volume and cognitive performance after ischemic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends beyond acute infarcts and also involves pre-existing WMH.Data access statement: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines

    Strategic white matter hyperintensity locations associated with post-stroke cognitive impairment:A multicenter study in 1568 stroke patients

    Get PDF
    Background: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse cognitive outcome after stroke, but the role of WMH location in this association is unclear.Aims: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke.Methods: Individual patient data from nine ischemic stroke cohorts with magnetic resonance imaging (MRI) were harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, primarily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus.Results: The total study sample consisted of 1568 patients (39.9% female, mean age = 67.3 years). Total WMH volume was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic radiation was significantly associated with cognitive performance on attention and executive functioning and information processing speed and WMH volume in the forceps major with information processing speed. The multivariable lasso regression showed that these associations were independent of age, sex, education, and total infarct volume and had larger coefficients than total WMH volume.Conclusion: These results show tract-specific relations between WMH volume and cognitive performance after ischemic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends beyond acute infarcts and also involves pre-existing WMH.Data access statement: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines

    Sex Differences in Poststroke Cognitive Impairment: A Multicenter Study in 2343 Patients With Acute Ischemic Stroke

    Get PDF
    BACKGROUND: Poststroke cognitive impairment (PSCI) occurs in about half of stroke survivors. Cumulative evidence indicates that functional outcomes of stroke are worse in women than men. Yet it is unknown whether the occurrence and characteristics of PSCI differ between men and women. METHODS: Individual patient data from 9 cohorts of patients with ischemic stroke were harmonized and pooled through the Meta-VCI-Map consortium (n=2343, 38% women). We included patients with visible symptomatic infarcts on computed tomography/magnetic resonance imaging and cognitive assessment within 15 months after stroke. PSCI was defined as impairment in ≥1 cognitive domains on neuropsychological assessment. Logistic regression analyses were performed to compare men to women, adjusted for study cohort, to obtain odds ratios for PSCI and individual cognitive domains. We also explored sensitivity and specificity of cognitive screening tools for detecting PSCI, according to sex (Mini-Mental State Examination, 4 cohorts, n=1814; Montreal Cognitive Assessment, 3 cohorts, n=278). RESULTS: PSCI was found in 51% of both women and men. Men had a lower risk of impairment of attention and executive functioning (men: odds ratio, 0.76 [95% CI, 0.61-0.96]), and language (men: odds ratio, 0.67 [95% CI, 0.45-0.85]), but a higher risk of verbal memory impairment (men: odds ratio, 1.43 [95% CI, 1.17-1.75]). The sensitivity of Mini-Mental State Examination (<25) for PSCI was higher for women (0.53) than for men (0.27; P=0.02), with a lower specificity for women (0.80) than men (0.96; P=0.01). Sensitivity and specificity of Montreal Cognitive Assessment (<26.) for PSCI was comparable between women and men (0.91 versus 0.86; P=0.62 and 0.29 versus 0.28; P=0.86, respectively). CONCLUSIONS: Sex was not associated with PSCI occurrence but affected domains differed between men and women. The latter may explain why sensitivity of the Mini-Mental State Examination for detecting PSCI was higher in women with a lower specificity compared with men. These sex differences need to be considered when screening for and diagnosing PSCI in clinical practice

    Sex Differences in Poststroke Cognitive Impairment : A Multicenter Study in 2343 Patients With Acute Ischemic Stroke

    Get PDF
    Funding Information: Dr Exalto is supported by Alzheimer Nederland WE.03-2019-15 and Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation (CVON 2018-28 & 2012-06). The Meta-VCI Map consortium is supported by Vici Grant 918.16.616 from The Netherlands Organisation for Health Research and Development (ZonMw) to Dr Biessels. Harmonization analyses were supported by a Rudolf Magnus Young Talent Fellowship from the University Medical Center Utrecht Brain Center to Dr Biesbroek. The CASPER cohort was supported by Maastricht University, Health Foundation Limburg, and Stichting Adriana van Rinsum-Ponsen. The CROMIS-2 cohort was funded by the UK Stroke Association and the British Heart Foundation (grant number TSA BHF 2009/01). The CU-STRIDE cohort was supported by the Health and Health Services Research Fund of the Food and Health Bureau of the Government of Hong Kong (grant number 0708041), the Lui Che Woo Institute of Innovative Medicine, and Therese Pei Fong Chow Research Center for Prevention of Dementia. The GRECogVASC cohort was funded by Amiens University Hospital and by a grant from the French Ministry of Health (grant number DGOS R1/2013/144). The MSS-2 cohort is funded by the Wellcome Trust (grant number WT088134/Z/09/A to Dr Wardlaw) and the Row Fogo Charitable Trust. The PROCRAS cohort was funded via ZonMW as part of the TopZorg project in 2015 (grant number 842003011). The CODECS cohort (ongoing) is supported by a grant from Stichting Coolsingel (grant number 514). The Bundang VCI and Hallym VCI cohort groups do not wish to report any relevant funding sources. At the time of contribution, Dr Hamilton was funded by the College of Medicine and Veterinary Medicine at the University of Edinburgh and was supported by the Wellcome Trust through the Translational Neuroscience PhD program at the University of Edinburgh. Publisher Copyright: © 2023 Lippincott Williams and Wilkins. All rights reserved.Peer reviewedPublisher PD

    ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI

    Get PDF
    Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org).Fundacao para a Ciencia e Tecnologia (FCT), Portugal (scholarship number PD/BD/113968/2015). FCT with the UID/EEA/04436/2013, by FEDER funds through COMPETE 2020, POCI-01-0145-FEDER-006941. NIH Blueprint for Neuroscience Research (T90DA022759/R90DA023427) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under award number 5T32EB1680. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. PAC-PRECISE-LISBOA-01-0145-FEDER-016394. FEDER-POR Lisboa 2020-Programa Operacional Regional de Lisboa PORTUGAL 2020 and Fundacao para a Ciencia e a Tecnologia. GPU computing resources provided by the MGH and BWH Center for Clinical Data Science Graduate School for Computing in Medicine and Life Sciences funded by Germany's Excellence Initiative [DFG GSC 235/2]. National Research National Research Foundation of Korea (NRF) MSIT, NRF-2016R1C1B1012002, MSIT, No. 2014R1A4A1007895, NRF-2017R1A2B4008956 Swiss National Science Foundation-DACH 320030L_163363

    Network impact score is an independent predictor of post-stroke cognitive impairment: A multicenter cohort study in 2341 patients with acute ischemic stroke

    Get PDF
    BACKGROUND: Post-stroke cognitive impairment (PSCI) is a common consequence of stroke. Accurate prediction of PSCI risk is challenging. The recently developed network impact score, which integrates information on infarct location and size with brain network topology, may improve PSCI risk prediction. AIMS: To determine if the network impact score is an independent predictor of PSCI, and of cognitive recovery or decline. METHODS: We pooled data from patients with acute ischemic stroke from 12 cohorts through the Meta VCI Map consortium. PSCI was defined as impairment in ≥ 1 cognitive domain on neuropsychological examination, or abnormal Montreal Cognitive Assessment. Cognitive recovery was defined as conversion from PSCI 24 months) and cognitive recovery or decline using logistic regression. Models were adjusted for age, sex, education, prior stroke, infarct volume, and study site. RESULTS: We included 2341 patients with 4657 cognitive assessments. PSCI was present in 398/844 patients (47%) 24 months. Cognitive recovery occurred in 64/181 (35%) patients and cognitive decline in 26/287 (9%). The network impact score predicted PSCI in the univariable (OR 1.50, 95%CI 1.34-1.68) and multivariable (OR 1.27, 95%CI 1.10-1.46) GEE model, with similar ORs in the logistic regression models for specified post-stroke intervals. The network impact score was not associated with cognitive recovery or decline. CONCLUSIONS: The network impact score is an independent predictor of PSCI. As such, the network impact score may contribute to a more precise and individualized cognitive prognostication in patients with ischemic stroke. Future studies should address if multimodal prediction models, combining the network impact score with demographics, clinical characteristics and other advanced brain imaging biomarkers, will provide accurate individualized prediction of PSCI. A tool for calculating the network impact score is freely available at https://metavcimap.org/features/software-tools/lsm-viewer/

    Clonal hematopoiesis is associated with risk of severe Covid-19.

    Get PDF
    Acquired somatic mutations in hematopoietic stem and progenitor cells (clonal hematopoiesis or CH) are associated with advanced age, increased risk of cardiovascular and malignant diseases, and decreased overall survival. These adverse sequelae may be mediated by altered inflammatory profiles observed in patients with CH. A pro-inflammatory immunologic profile is also associated with worse outcomes of certain infections, including SARS-CoV-2 and its associated disease Covid-19. Whether CH predisposes to severe Covid-19 or other infections is unknown. Among 525 individuals with Covid-19 from Memorial Sloan Kettering (MSK) and the Korean Clonal Hematopoiesis (KoCH) consortia, we show that CH is associated with severe Covid-19 outcomes (OR = 1.85, 95%=1.15-2.99, p = 0.01), in particular CH characterized by non-cancer driver mutations (OR = 2.01, 95% CI = 1.15-3.50, p = 0.01). We further explore the relationship between CH and risk of other infections in 14,211 solid tumor patients at MSK. CH is significantly associated with risk of Clostridium Difficile (HR = 2.01, 95% CI: 1.22-3.30, p = 6×10-3) and Streptococcus/Enterococcus infections (HR = 1.56, 95% CI = 1.15-2.13, p = 5×10-3). These findings suggest a relationship between CH and risk of severe infections that warrants further investigation

    High-resolution CT phenotypes in pulmonary sarcoidosis: a multinational Delphi consensus study

    Get PDF
    One view of sarcoidosis is that the term covers many different diseases. However, no classification framework exists for the future exploration of pathogenetic pathways, genetic or trigger predilections, patterns of lung function impairment, or treatment separations, or for the development of diagnostic algorithms or relevant outcome measures. We aimed to establish agreement on high-resolution CT (HRCT) phenotypic separations in sarcoidosis to anchor future CT research through a multinational two-round Delphi consensus process. Delphi participants included members of the Fleischner Society and the World Association of Sarcoidosis and other Granulomatous Disorders, as well as members' nominees. 146 individuals (98 chest physicians, 48 thoracic radiologists) from 28 countries took part, 144 of whom completed both Delphi rounds. After rating of 35 Delphi statements on a five-point Likert scale, consensus was achieved for 22 (63%) statements. There was 97% agreement on the existence of distinct HRCT phenotypes, with seven HRCT phenotypes that were categorised by participants as non-fibrotic or likely to be fibrotic. The international consensus reached in this Delphi exercise justifies the formulation of a CT classification as a basis for the possible definition of separate diseases. Further refinement of phenotypes with rapidly achievable CT studies is now needed to underpin the development of a formal classification of sarcoidosis
    corecore