305 research outputs found

    Quantitative agreement of Dzyaloshinskii-Moriya interactions for domain-wall motion and spin-wave propagation

    Full text link
    The magnetic exchange interaction is the one of the key factors governing the basic characteristics of magnetic systems. Unlike the symmetric nature of the Heisenberg exchange interaction, the interfacial Dzyaloshinskii-Moriya interaction (DMI) generates an antisymmetric exchange interaction which offers challenging opportunities in spintronics with intriguing antisymmetric phenomena. The role of the DMI, however, is still being debated, largely because distinct strengths of DMI have been measured for different magnetic objects, particularly chiral magnetic domain walls (DWs) and non-reciprocal spin waves (SWs). In this paper, we show that, after careful data analysis, both the DWs and SWs experience the same strength of DMI. This was confirmed by spin-torque efficiency measurement for the DWs, and Brillouin light scattering measurement for the SWs. This observation, therefore, indicates the unique role of the DMI on the magnetic DW and SW dynamics and also guarantees the compatibility of several DMI-measurement schemes recently proposed.Comment: 24 pages, 5 figure

    Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli

    Get PDF
    Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process

    Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes

    Get PDF
    AbstractRegulation of tomato fruit ripening may help extend fruit shelf life and prevent losses due to spoilage. Here, tomato fruit were investigated whether sound treatment could delay their ripening. Harvested fruit were treated with low-frequency sound waves (1kHz) for 6h, and then monitored various characteristics of the fruit over 14-days at 23±1°C. Seven days after the treatment, 85% of the treated fruit were green, versus fewer than 50% of the non-treated fruit. Most of the tomato fruit had transitioned to the red ripening stage by 14 days after treatment. Ethylene production and respiration rate were lower in the sound-treated than non-treated tomatoes. Furthermore, changes in surface color and flesh firmness were delayed in the treated fruit. To investigate how sound wave treatment effects on fruit ripening, the expression of ethylene-related genes was analyzed by quantitative real-time RT-PCR analysis. The expression level of several ethylene biosynthetic (ACS2, ACS4, ACO1, E4 and E8) and ripening-regulated (RIN, TAGL1, HB-1, NOR, CNR) genes was influenced by sound wave treatment. These results indicated that sound wave treatment delays tomato fruit ripening by altering the expression of important genes in the ethylene biosynthesis and ethylene signaling pathways

    Fatal Ifosfamide-Induced Metabolic Encephalopathy in Patients with Recurrent Epithelial Ovarian Cancer: Report of Two Cases

    Get PDF
    Central nervous system (CNS) toxicity has been reported in approximately 10-30% of patients receiving intravenous infusions of ifosfamide. Encephalopathy is a rare but serious CNS adverse reaction in these patients, and although usually transient and reversible, may cause persistent neurological dysfunction or death. Clinical features range from fatigue and confusion to coma and death. Although methylene blue can be used to treat ifosfamide-induced neurotoxicity, including encephalopathy, its mechanism of action remains poorly defined. We describe here two patients with recurrent epithelial ovarian cancer who experienced fatal encephalopathy following ifosfamide/mesna treatment

    Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells

    Get PDF
    Sialylation of recombinant therapeutic glycoproteins modulates their pharmacokinetic properties by affecting their in vivo half-life. N-glycan branching on glycoproteins increases the number of potential attachment sites for sialic acid. Here, we introduce a new approach for increasing the sialylation of recombinant human erythropoietin (rhEPO) produced in CHO cells by modulating poly-N-acetyllactosamine (poly-LacNAc) biosynthesis. We did not observe an increase in rhEPO sialylation, however, until the feedback inhibition by intracellular cytidine monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), which is a limiting factor for sialylation, was released. Thus, we found that a combined approach inhibiting poly-LacNAc biosynthesis and releasing CMP-Neu5Ac feedback inhibition produces the most significant increase in rhEPO sialylation in metabolically engineered CHO cells. Furthermore, a detailed analysis of the resulting N-glycan structures using LC/MS revealed increased tri- and tetra- sialylated N-glycan structures accompanied by a reduction of di-sialylated N-glycan structures. These results validate our new approach for glycosylation engineering, and we expect this approach will be useful in future efforts to enhance the efficacy of other therapeutic glycoproteins

    Fracture of a Polyethylene Tibial Post in a Scorpio Posterior-Stabilized Knee Prosthesis

    Get PDF
    We report the case of a polyethylene tibial post fracture in a 72-year-old woman 14 months after a Scorpio posterior-stabilized (PS) total knee arthroplasty. The polyethylene wear was found around the fracture site of the post, especially over the anterior aspect of the post base. The failure mechanism of the post fracture in the present case was anterior impingement with excessive wear over the base of the anterior aspect of the tibial post, which became a stress-riser of post and cam articulation. This is the first report of a polyethylene tibial post fracture of a Scorpio PS prosthesis

    Paratubal serous borderline tumor

    Get PDF
    Although paratubal cysts are well-characterized incidental findings, paratubal serous borderline tumors are very rare, with only one case report in the literature. We describe here a 27-year-old, nulliparous, married woman with a paratubal serous borderline tumor. The patient presented with a huge pelvic mass accompanied by flank pain and underwent paratubal cystectomy and fertility-sparing surgical staging procedures. Thirteen months after surgery, she delivered a healthy baby at term. She is well, without evidence of disease, 20 months after surgery. Because paratubal serous borderline tumors are very rare, their optimal management must be extrapolated from their ovarian counterparts

    House of Commons Library: Briefing paper: Number 07147, 13 April 2018: School places in England: applications, allocations and appeals

    Get PDF
    Background: We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice. Methods: We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the effects of GRe, prodynorphin knockout, pharmacological inhibition of κ-opioid receptor (i.e., nor-binaltorphimine), or neurokinin 1 (NK1) receptor (i.e., L-733,060) against MA insult in mice. Results: GRe attenuated MA-induced decreases in dynorphin level, prodynorphin mRNA expression in the striatum of wild-type (WT) mice. Prodynorphin knockout potentiated MA-induced dopaminergic toxicity in mice. The imbalance of enzymatic antioxidant system, oxidative burdens, microgliosis, and pro-apoptotic changes led to the dopaminergic neurotoxicity. Neuroprotective effects of GRe were more pronounced in prodynorphin knockout than in WT mice. Nor-binaltorphimine, a κ-opioid receptor antagonist, counteracted against protective effects of GRe. In addition, we found that GRe significantly attenuated MA-induced increases in substance P-immunoreactivity and substance P mRNA expression in the substantia nigra. These increases were more evident in prodynorphin knockout than in WT mice. Although, we observed that substance P-immunoreactivity was co-localized in NeuN-immunreactive neurons, GFAP-immunoreactive astrocytes, and Iba-1-immunoreactive microglia. NK1 receptor antagonist L-733,060 or GRe selectively inhibited microgliosis induced by MA. Furthermore, L-733,060 did not show any additive effects against GRe-mediated protective activity (i.e., antioxidant, antimicroglial, and antiapoptotic effects), indicating that NK1 receptor is one of the molecular targets of GRe. Conclusions: Our results suggest that GRe protects MA-induced dopaminergic neurotoxicity via upregulatgion of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated NK1 R
    corecore