1,517 research outputs found

    Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Level in SD Rats Model

    Get PDF
    Abstract This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; \u3c1000 Da, GO2KA2; 1000–10,000 Da, GO2KA3; MW \u3e 10,000 Da). The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control (0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW \u3c 1000 Da) had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management

    Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene

    Get PDF
    Successful PCR starts with proper priming between an oligonucleotide primer and the template DNA. However, the inevitable risk of mismatched priming cannot be avoided in the currently used primer system, even though considerable time and effort are devoted to primer design and optimization of reaction conditions. Here, we report a novel dual priming oligonucleotide (DPO) which contains two separate priming regions joined by a polydeoxyinosine linker. The linker assumes a bubble-like structure which itself is not involved in priming, but rather delineates the boundary between the two parts of the primer. This structure results in two primer segments with distinct annealing properties: a longer 5′-segment that initiates stable priming, and a short 3′-segment that determines target-specific extension. This DPO-based system is a fundamental tool for blocking extension of non-specifically primed templates, and thereby generates consistently high PCR specificity even under less than optimal PCR conditions. The strength and utility of the DPO system are demonstrated here using multiplex PCR and SNP genotyping PCR

    Successful Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for Recurrent Uterine Fibroid Previously Treated with Uterine Artery Embolization

    Get PDF
    A 45-year-old premenopausal woman was referred to our clinic due to recurring symptoms of uterine fibroids, nine years after a uterine artery embolization (UAE). At the time of screening, the patient presented with bilateral impairment and narrowing of the uterine arteries, which increased the risk of arterial perforation during repeated UAE procedures. The patient was subsequently referred for magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS) treatment. Following the treatment, the patient experienced a significant improvement in symptoms (symptom severity score was reduced from 47 to 12 by 1 year post-treatment). MR images at 3 months showed a 49% decrease in fibroid volume. There were no adverse events during the treatment or the follow-up period. This case suggests that MRgFUS can be an effective treatment option for patients with recurrent fibroids following previous UAE treatment

    Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine

    Get PDF
    Predicting the destination of a protein in a cell is important for annotating the function of the protein. Recent advances have allowed us to develop more accurate methods for predicting the subcellular localization of proteins. One of the most important factors for improving the accuracy of these methods is related to the introduction of new useful features for protein sequences. In this paper we present a new method for extracting appropriate features from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine (SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reached 94.70% for the eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which is the highest prediction accuracy among the methods reported so far with such data sets. Our experimental results confirm that our feature extraction method based on pairwise sequence alignment is useful for this classification problem

    Fermi level pinning on Si0.83Ge0.17 surface by inductively coupled plasma treatment

    Get PDF
    Effects of inductively coupled plasma (ICP) treatment on Fermi level pinning on the surface of Si0.83 Ge0.17 was studied by current-voltage and x-ray photoemission spectroscopy measurements. ICP treatment induced the growth of silicon oxide, suggesting that Si vacancies are generated under the oxide. From linear fitting of Schottky barrier heights with metal work functions, it was found that surface state density increased from 6.60?? 1012 to 1.13?? 1013 cm2 eV by the ICP treatment, leading to the pinning of surface Fermi level about EC ???0.53 eV. From this, it is suggested that the Si vacancies are the main surface states in pinning Fermi level on the ICP-treated surface.open1

    The C-terminal region of Bfl-1 sensitizes non-small cell lung cancer to gemcitabine-induced apoptosis by suppressing NF-κB activity and down-regulating Bfl-1

    Get PDF
    Gemcitabine is used to treat several cancers including lung cancer. However, tumor cells often escape gemcitabine-induced cell death via various mechanisms, which include modulating bcl-2 family members and NF-κB activation. We previously reported that the C-terminal region of Bfl-1 fused with GFP (BC) is sufficient to induce apoptosis in 293T cells. In the present study, we investigated the anti-tumor effect of combined BC gene therapy and gemcitabine chemotherapy in vitro and in vivo using non-small cell lung cancer cell lines and a xenograft model. Cell lines were resistant to low dose gemcitabine (4-40 ng/ml), which induced NF-κB activation and concomitant up-regulation of Bfl-1 (an NF-κB-regulated anti-apoptotic protein). BC induced the apoptosis of A549 and H157 cells with caspase-3 activation. Furthermore, co-treatment with BC and low dose gemcitabine synergistically and efficiently induced mitochondria-mediated apoptosis in these cells. When administered alone or with low dose gemcitabine, BC suppressed NF-κB activity, inhibited the nuclear translocation of p65/relA, and down-regulated Bfl-1 expression. Furthermore, direct suppression of Bfl-1 by RNA interference sensitized cells to gemcitabine-induced cell death, suggesting that Bfl-1 importantly regulates lung cancer cell sensitivity to gemcitabine. BC and gemcitabine co-treatment also showed a strong anti-tumor effect in a nude mouse/A549 xenograft model. These results suggest that lung cancer cells become resistant to gemcitabine via NF-κB activation and the subsequent overexpression of Bfl-1, and that BC, which has both pro-apoptotic and NF-κB inhibitory effects, could be harnessed as a gene therapy to complement gemcitabine chemotherapy in non-small cell lung cancer

    Polyaromatic hydrocarbons (PAHs) levels from two industrial zones (Sihwa and Banwal) located in An-san city of the Korean Peninsula and their influence on lake

    Get PDF
    The present research investigation was aimed at monitoring the levels of polyaromatic hydrocarbons (PAHs) in the Korean ambient air, pine needle, and soil. Samples were collected from two large industrial zones of An-san city namely Sihwa and Banwal, both these industrial zones were further divided into major and minor zones in order to compare the levels of PAHs between the two industrial zones. Furthermore, the quality of the lake water near these two industrial zones was also monitored by analyzing water (dissolved phase, suspended solids) and sediment samples for the detection of PAHs. In this study, a high volume sampling method (HVAS-Sibata) was employed to collect airborne PAHs in both the particulate and gas phases. Hewlett Packard gas chromatographs equipped with mass spectrometer detectors (GC/MS) were used to analyze the samples. The monitoring data revealed that Sihwa major industrial zone have lower levels of PAHs in comparison to Sihwa minor industrial zone where increase levels of PAHs were observed in both the ambient air and soil samples, whereas in case of pine needle sample the PAHs levels were higher in Sihwa industrial zone. The sum of PAHs levels in ambient air from Sihwa major industrial and minor zones were found to be ranging between 50.17 ng/m3 and 96.46 ng/m3 whereas the estimated levels of PAHs from Banwal major industrial and minor zones were found to be ranging between 149.64 ng/m3 and 34.87 ng/m3 respectively. Since Banwal major industrial zone includes many sources, higher levels of PAHs were observed in almost all the samples as compared to Banwal minor industrial zone. Similarly, the level of PAHs in water and sediment samples from lake near Sihwa industrial zone showed an increase trend in dissolved and suspended solids in comparison to samples collected near Banwal industrial zone. Phenanthrene, Indeno[1,2,3-c,d]pyrene and Benzo[g,h,i]perylene showed the highest levels in both the zones. However, the levels of PAHs in sediment samples were lower near Sihwa industrial zone and vice versa, however lowest concentration of Anthracene was observed in both the zones. A detailed and thorough environmental monitoring for the presence of these toxic compounds in the environment is currently needed to set a baseline for future research. The work is still in progress to estimate the levels of PAHs from both these sites within our laboratory. @JASE

    Association between work-related health problems and job insecurity in permanent and temporary employees

    Get PDF
    OBJECTIVES: This research was conducted with an aim of determining the correlation between job insecurity and an employee’s work-related health problems among permanent and temporary workers. METHODS: Using the data from the First Korean Working Conditions Survey conducted in 2006, a total of 7,071 workers, excluding employers and the self-employed, were analyzed. Work-related health problems were categorized as backache, headache, abdominal pain, muscular pain, stress, fatigue, insomnia, anxiety or depression. Each problem was then analyzed for its relationship to job insecurity through logistic regression analysis. RESULTS: Among the 7,071 workers, 5,294 (74.9%) were permanent workers and 1,777 (25.1%) were temporary workers. For the permanent workers, presence of high or moderate job insecurity appeared more closely linked to backache, headache, abdominal pain, muscular pain, stress, fatigue, insomnia, anxiety, and depression compared to absence of job insecurity. However, for the temporary workers, only depression appeared to be associated with the presence of high job insecurity. CONCLUSION: The study showed that the presence of job insecurity is correlated with work-related health problems. The deleterious effects of job insecurity appeared to be stronger in permanent than temporary workers. Additional research should investigate ways to effectively reduce job insecurity

    Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils

    Get PDF
    Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize
    corecore