17,798 research outputs found
A centralised cloud services repository (CCSR) framework for optimal cloud service advertisement discovery from heterogenous web portals
© 2013 IEEE. A cloud service marketplace is the first point for a consumer to discovery, select and possible composition of different services. Although there are some private cloud service marketplaces, such as Microsoft Azure, that allow consumers to search service advertainment belonging to a given vendor. However, due to an increase in the number of cloud service advertisement, a consumer needs to find related services across the worldwide web (WWW). A consumer mostly uses a search engine such as Google, Bing, for the service advertisement discovery. However, these search engines are insufficient in retrieving related cloud services advertainments on time. There is a need for a framework that effectively and efficiently discovery of the related service advertisement for ordinary users. This paper addresses the issue by proposing a user-friendly harvester and a centralised cloud service repository framework. The proposed Centralised Cloud Service Repository (CCSR) framework has two modules - Harvesting as-a-Service (HaaS) and the service repository module. The HaaS module allows users to extract real-time data from the web and make it available to different file format without the need to write any code. The service repository module provides a centralised cloud service repository that enables a consumer for efficient and effective cloud service discovery. We validate and demonstrate the suitability of our framework by comparing its efficiency and feasibility with three widely used open-source harvesters. From the evaluative result, we observe that when we harvest a large number of services advertisements, the HaaS is more efficient compared with the traditional harvesting tools. Our cloud services advertisements dataset is publicly available for future research at: http://cloudmarketregistry.com/cloud-market-registry/home.html
UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells
The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. © 2012 Kwon et al
Dynamic Release of Bending Stress in Short dsDNA by Formation of a Kink and Forks
Bending with high curvature is one of the major mechanical properties of double-stranded DNA (dsDNA) that is essential for its biological functions. The emergence of a kink arising from local melting in the middle of dsDNA has been suggested as a mechanism of releasing the energy cost of bending. Herein, we report that strong bending induces two types of short dsDNA deformations, induced by two types of local melting, namely, a kink in the middle and forks at the ends, which we demonstrate using D-shaped DNA nanostructures. The two types of deformed dsDNA structures dynamically interconvert on a millisecond timescale. The transition from a fork to a kink is dominated by entropic contribution (anti-Arrhenius behavior), while the transition from a kink to a fork is dominated by enthalpic contributions. The presence of mismatches in dsDNA accelerates kink formation, and the transition from a kink to a fork is removed when the mismatch size is three base pairs.1157Ysciescopu
Popularity-Based Adaptive Content Delivery Scheme with In-Network Caching
To solve the increasing popularity of video streaming services over the Internet, recent research activities have addressed the locality of content delivery from a network edge by introducing a storage module into a router. To employ in-network caching and persistent request routing, this paper introduces a hybrid content delivery network (CDN) system combining novel content routers in an underlay together with a traditional CDN server in an overlay. This system first selects the most suitable delivery scheme (that is, multicast or broadcast) for the content in question and then allocates an appropriate number of channels based on a consideration of the content’s popularity. The proposed scheme aims to minimize traffic volume and achieve optimal delivery cost, since the most popular content is delivered through broadcast channels and the least popular through multicast channels. The performance of the adaptive scheme is clearly evaluated and compared against both the multicast and broadcast schemes in terms of the optimal in-network caching size and number of unicast channels in a content router to observe the significant impact of our proposed scheme
Nitride mediated epitaxy of CoSi2 through self-interlayer-formation of plasma-enhanced atomic layer deposition Co
The silicide formation by annealing plasma-enhanced atomic layer deposition (PE-ALD) Co and physical vapor deposition (PVD) Co was comparatively studied. Very pure Co films were deposited by PE-ALD with CoCp2 and NH3 plasma. However, various analyses have shown that amorphous SiNx interlayer was formed between PE-ALD Co and Si due to the NH3 plasma exposure in contrast with PVD Co. Due to the nitride interlayer, CoSi2 was epitaxially grown from PE-ALD Co by rapid thermal annealing through nitride mediated epitaxy. This process scheme is expected to provide a simple route for contact formation in future nanoscale devices. (c) 2007 American Institute of Physics.open112221sciescopu
A PDMS-Based 2-Axis Waterproof Scanner for Photoacoustic Microscopy
Optical-resolution photoacoustic microscopy (OR-PAM) is an imaging tool to provide in vivo optically sensitive images in biomedical research. To achieve a small size, fast imaging speed, wide scan range, and high signal-to-noise ratios (SNRs) in a water environment, we introduce a polydimethylsiloxane (PDMS)-based 2-axis scanner for a flexible and waterproof structure. The design, theoretical background, fabrication process and performance of the scanner are explained in details. The designed and fabricated scanner has dimensions of 15 × 15 × 15 mm along the X, Y and Z axes, respectively. The characteristics of the scanner are tested under DC and AC conditions. By pairing with electromagnetic forces, the maximum scanning angles in air and water are 18° and 13° along the X and Y axes, respectively. The measured resonance frequencies in air and water are 60 and 45 Hz along the X axis and 45 and 30 Hz along the Y axis, respectively. Finally, OR-PAM with high SNRs is demonstrated using the fabricated scanner, and the PA images of micro-patterned samples and microvasculatures of a mouse ear are successfully obtained with high-resolution and wide-field of view. OR-PAM equipped with the 2-axis PDMS based waterproof scanner has lateral and axial resolutions of 3.6 μm and 26 μm, respectively. This compact OR-PAM system could potentially and widely be used in preclinical and clinical applications. © 2015 by the authors; licensee MDPI, Basel, Switzerland.111513Ysciescopu
Plasma-Enhanced ALD of TiO2 Thin Films on SUS 304 Stainless Steel for Photocatalytic Application
Plasma-enhanced atomic layer deposition (PE-ALD) of TiO2 thin films using Ti(NMe2)(4) [tetrakis(dimethylamido) Ti] and O-2 plasma were prepared on stainless steel to show the self-cleaning effect. The TiO2 thin films deposited on stainless steel have high growth rate, large surface roughness, and low impurities. The film deposited below 200 degrees C was amorphous, while the films deposited at 300 and 400 degrees C showed anatase and rutile phases, respectively. The contact angle measurements on crystalline PE-ALD TiO2 thin films exhibited superhydrophilicity after UV irradiation. The TiO2 thin film with anatase phase deposited at 300 degrees C showed the highest photocatalytic efficiency, which is higher than on Activ glass or thermal ALD TiO2 films. We suggest that anatase structure and large surface area of TiO2 thin film on stainless steel are the main factors for the high photocatalytic efficiency. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3095515] All rights reserved.X117sciescopu
Techno-economic assessment of fertiliser drawn forward osmosis process for greenwall plants from urban wastewater
© 2019 Institution of Chemical Engineers Pressure-assisted osmosis (PAO) has been suggested to integrate with fertiliser driven forward osmosis (FDFO) to improve the overall efficiency of simultaneous wastewater reuse and fertiliser osmotic dilution. This study aims to demonstrate the techno-economic feasibility of pressure-assisted fertiliser driven forward osmosis (PAFDO) hybrid system compared to the existing ultraviolet and reverse osmosis (UV–RO) process. The results showed that coupling FDFO with PAO (i.e. PAFDO) could help fulfill the water quality required for greenwall fertigation. An economic analysis on capital and operational costs for the PAFDO showed that the PAO mode application at a lower FDFO dilution stage could significantly reduce the costs. However, when considering the different applied pressures in PAO (i.e. 2, 4, and 6 bar), the increase in the total water cost was not significant. This indicates that the dilution stage for applying PAO is more sensitive to the total water cost of the PAFDO than the applied pressure. A coupling of higher average water flux (>10 L/m2h) and lower draw solution (DS) dilution factor (DF < 60) is recommended. Therefore, this could make the PAFDO system economically viable compared to the benchmark for the UV-RO disinfection system
- …