1,058 research outputs found

    Endoplasmic Reticulum Stress and Insulin Biosynthesis: A Review

    Get PDF
    Insulin resistance and pancreatic beta cell dysfunction are major contributors to the pathogenesis of diabetes. Various conditions play a role in the pathogenesis of pancreatic beta cell dysfunction and are correlated with endoplasmic reticulum (ER) stress. Pancreatic beta cells are susceptible to ER stress. Many studies have shown that increased ER stress induces pancreatic beta cell dysfunction and diabetes mellitus using genetic models of ER stress and by various stimuli. There are many reports indicating that ER stress plays an important role in the impairment of insulin biosynthesis, suggesting that reduction of ER stress could be a therapeutic target for diabetes. In this paper, we reviewed the relationship between ER stress and diabetes and how ER stress controls insulin biosynthesis

    Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption

    Get PDF
    Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1−/−) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of Vav1−/− mice than in WT mice. Furthermore, the bone status of Vav1−/− mice was analyzed in situ and the femurs of Vav1−/− mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an αvβ3 integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption

    Ginsenoside Rg3 Reduces Lipid Accumulation with AMP-Activated Protein Kinase (AMPK) Activation in HepG2 Cells

    Get PDF
    Cardiovascular disease (CVD) is one of the main causes of mortality worldwide, and dyslipidemia is a major risk factor for CVD. Ginseng has been widely used in the clinic to treat CVD. Ginsenoside Rg3, one of the major active components of ginseng, has been reported to exhibit antiobesity, antidiabetic, and cardioprotective effects. However, the effect of ginsenoside Rg3 on hepatic lipid metabolism remains unclear. Therefore, we investigated whether ginsenoside Rg3 would regulate hepatic lipid metabolism with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Ginsenoside Rg3 significantly reduced hepatic cholesterol and triglyceride levels. Furthermore, ginsenoside Rg3 inhibited expression of sterol regulatory element binding protein-2 (SREBP-2) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR). Ginsenoside Rg3 increased activity of AMPK, a major regulator of energy metabolism. These results suggest that ginsenoside Rg3 reduces hepatic lipid accumulation with inhibition of SREBP-2 and HMGCR expression and stimulation of AMPK activity in HepG2 cells. Therefore, ginsenoside Rg3 may be beneficial as a food ingredient to lower the risk of CVD by regulating dyslipidemia

    Four new Microbacterium species isolated from seaweeds and reclassification of five Microbacterium species with a proposal of Paramicrobacterium gen. nov. under a genome-based framework of the genus Microbacterium

    Get PDF
    The taxonomic relationships of 10 strains isolated from seaweeds collected from two beaches in Republic of Korea were studied by sequencing and analyses of 16S rRNA genes and whole genomes. For the construction of a more reliable and robust 16S rRNA gene phylogeny, the authentic and nearly complete 16S rRNA gene sequences of all the Microbacterium type strains were selected through pairwise comparison of the sequences contained in several public databases including the List of Prokaryotic names with Standing in Nomenclature (LPSN). The clustering of the ten study strains into five distinct groups was apparent in this single gene-based phylogenetic tree. In addition, the 16S rRNA gene sequences of a few type strains were shown to be incorrectly listed in LPSN. An overall phylogenomic clustering of the genus Microbacterium was performed with a total of 113 genomes by core genome analysis. As a result, nine major (≥ three type strains) and eight minor (two type strains) clusters were defined mostly at gene support index of 92 and mean intra-cluster OrthoANIu of >80.00%. All of the study strains were assigned to a Microbacterium liquefaciens clade and distributed further into four subclusters in the core genome-based phylogenetic tree. In vitro phenotypic assays for physiological, biochemical, and chemotaxonomic characteristics were also carried out with the ten study strains and seven closely related type strains. Comparison of the overall genomic relatedness indices (OGRI) including OrthoANIu and digital DNA–DNA hybridization supported that the study strains constituted four new species of the genus Microbacterium. In addition, some Microbacterium type strains were reclassified as members of preexisting species. Moreover, some of them were embedded in a new genus of the family Microbacteriaceae based on their distinct separation in the core genome-based phylogenetic tree and amino acid identity matrices. Based on the results here, four new species, namely, Microbacterium aurugineum sp. nov., Microbacterium croceum sp. nov., Microbacterium galbinum sp. nov., and Microbacterium sufflavum sp. nov., are described, along with the proposal of Paramicrobacterium gen. nov. containing five reclassified Microbacterium species from the “Microbacterium agarici clade”, with Paramicrobacterium agarici gen. nov., comb. nov. as the type species

    Neck control after definitive radiochemotherapy without planned neck dissection in node-positive head and neck cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate neck control outcomes after definitive radiochemotherapy without planned neck dissection in node-positive head and neck cancer.</p> <p>Methods</p> <p>We retrospectively reviewed medical records of fifty patients with node-positive head and neck cancer who received definitive radiochemotherapy. Twelve patients subsequently underwent neck dissection for suspicious recurrent or persistent disease. A median dose of 70 Gy (range 60-70.6) was delivered to involved nodes. Response evaluation was performed at a median of 5 weeks after completion of radiotherapy.</p> <p>Results</p> <p>Neck failure was observed in 11 patients and the 3-year regional control (RC) rate was 77.1%. Neck dissection was performed in 10 of the 11 patients; seven of these cases were successfully salvaged, and the ultimate rate of neck control was 92%. The remaining two patients who received neck dissection had negative pathologic results. On univariate analysis, initial nodal size > 2 cm, a less-than-complete response at the primary site, post-radiotherapy nodal size > 1.5 cm, and post-radiotherapy nodal necrosis were associated with RC. On multivariate analysis, less-than-complete primary site response and post-radiotherapy nodal necrosis were identified as independent prognostic factors for RC.</p> <p>Conclusions</p> <p>The neck failure rate after definitive radiochemotherapy without planned neck dissection was 22%. Two-thirds of these were successfully salvaged with neck dissection and the ultimate neck control rate was 92%. Our results suggest that planned neck dissection might not be necessary in patients with complete response of primary site, no evidence of residual lesion > 1.5 cm, or no necrotic lymph nodes at the 1-2 months follow-up evaluation after radiotherapy.</p

    High resolution crystal structure of PedB: a structural basis for the classification of pediocin-like immunity proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pediocin-like bacteriocins, ribosomally-synthesized antimicrobial peptides, are generally coexpressed with cognate immunity proteins in order to protect the bacteriocin-producer from its own bacteriocin. As a step for understanding the mode of action of immunity proteins, we determined the crystal structure of PedB, a pediocin-like immunity protein conferring immunity to pediocin PP-1.</p> <p>Results</p> <p>The 1.6 Å crystal structure of PedB reveals that PedB consists of an antiparallel four-helix bundle with a flexible C-terminal end. PedB shows structural similarity to an immunity protein against enterocin A (EntA-im) but some disparity to an immunity protein against carnobacteriocin B2 (ImB2) in both the C-terminal conformation and the local structure constructed by α3, α4, and their connecting loop. Structure-inspired mutational studies reveal that deletion of the last seven residues of the C-terminus of PedB almost abolished its immunity activity.</p> <p>Conclusion</p> <p>The fact that PedB, EntA-im, and ImB2 share a four-helix bundle structure strongly suggests the structural conservation of this motif in the pediocin-like immunity proteins. The significant difference in the core structure and the C-terminal conformation provides a structural basis for the classification of pediocin-like immunity proteins. Our mutational study using C-terminal-shortened PedBs and the investigation of primary sequence of the C-terminal region, propose that several polar or charged residues in the extreme C-terminus of PedB which is crucial for the immunity are involved in the specific recognition of pediocin PP-1.</p

    Primary Pulmonary Plasmacytoma Presenting as Multiple Lung Nodules

    Get PDF
    Extramedullary plasmacytoma is a plasma cell tumor arising outside the bone marrow and usually occurs as a solitary tumor in the upper respiratory tract, such as the pharynx, paranasal sinuses, nasal cavity, or oral cavity [1]. Other cases develop in the lymph nodes, skin, gastrointestinal tract, genitourinary tract, and other regions. Primary pulmonary plasmacytomas are very rare and usually present as solitary lung nodules or masses [2]. Unusual cases manifest as diffuse pulmonary infiltration [3,4]. We describe here a unique case of primary pulmonary plasmacytoma, which presented as multiple lung nodules during regular screening in a patient with systemic lupus erythematosus

    A study on the effects of bottom electrode designs on aluminum nitride contour-mode resonators

    Get PDF
    This study presents the effects of bottom electrode designs on the operation of laterally vibrating aluminum nitride (AlN) contour-mode resonators (CMRs). A total of 160 CMRs were analyzed with varying bottom electrode areas at two resonant frequencies (f0) of about 230 MHz and 1.1 GHz. Specifically, we analyzed the impact of bottom electrode coverage rates on the resonator quality factor (Q) and electromechanical coupling (k2), which are important parameters for Radio Frequency (RF) and sensing applications. From our experiments, Q exhibited different trends to electrode coverage rates depending on the device resonant frequencies, while k2 increased with the coverage rate regardless of f0. Along with experimental measurements, our finite element analysis (FEA) revealed that the bottom electrode coverage rate determines the active (or vibrating) region of the resonator and, thus, directly impacts Q. Additionally, to alleviate thermoelastic damping (TED) and focus on mechanical damping effects, we analyzed the device performance at 10 K. Our findings indicated that a careful design of bottom electrodes could further improve both Q and k2 of AlN CMRs, which ultimately determines the power budget and noise level of the resonator in integrated oscillators and sensor systems. © 2019 by the authors.1
    corecore