272 research outputs found

    Preparation, Characterization, and Applications of Electrospun Carbon Nanofibers and Its Composites

    Get PDF
    Carbon nanofibers (CNFs) and its composites have gained vast attention due to its exceptional chemical and textural properties. So far, various multifunctional carbon nanofibers and its composites are developed with highly unique and tunable morphology. In this chapter, we reviewed unique fabrication methods that are recently reported and its characterization techniques such as SEM, FE-SEM, TEM, WAXD, XPS, AFM, and Raman. In addition, catalytic, energy, and environmental applications of carbon nanofiber composites (metals and/or metal oxide nanoparticles incorporated and/or decorated hybrid carbon nanofibers) are discussed. Preparation and characterization of electrospun carbon nanofiber composites and its applications in catalysis and energy storage are the main focus of this chapter

    Carbon Nanocomposites: Preparation and Its Application in Catalytic Organic Transformations

    Get PDF
    Carbon nanocomposites have gained huge interest in catalysis due to their small size and shape-dependent physicochemical properties. Particularly, metal nanostructures/carbon materials (mainly graphene and carbon nanotubes) based nanocomposites demonstrated extraordinary catalytic activity in organic reactions. The catalytic products prepared by using carbon nanocomposites are found to be highly valuable in various fields including pharmaceutical, biomedical, agricultural, and material sciences. Hence, the demand of carbon nanocomposites has been increasing rapidly, and the development of novel preparation methods also deserve a special concern. In this chapter, we discuss the main advances in the field over the last few years and explore the novel preparation methods of carbon nanocomposites (metal nanostructures/carbon materials) and their applications in various catalytic organic transformations

    Composite Nanofibers: Recent Progress in Adsorptive Removal and Photocatalytic Degradation of Dyes

    Get PDF
    This chapter intends to review the state of the art of a new nanomaterial generation based on electrospun composite nanofibers for dye removal from wastewater. Natural polymer-based nanofibers, nanofibers with unique morphology, and carbon nanofibers were comprehensively reviewed as capable carriers for a broad spectrum of functional materials such as metal oxides, zeolite, graphene and graphene oxide (GO), and metal-organic frameworks (MOFs) in the application of dye removal. The various nanostructures, adsorption capacity, advantages, and drawbacks were discussed along with mechanistic actions in the adsorption process and photocatalytic performance that emphasize current research development, opportunities, and challenges. The chapter covers multiple intriguing topics with in-depth discussion and is a valuable reference for researchers who are working on nanomaterials and the treatment of colored waters

    Mechanical Force for Fabricating Nanofiber

    Get PDF
    Nanofiber has attracted increasing attention owing to its wide applications such as filtration, drug delivery, wound dressing, separator, etc. A lot of fabrication methods are developed in the last few decades, electrospinning method is the most frequently utilized method for producing nanofiber. However, electrospinning features a use of electrical field to produce nanofiber, which have obviously high production cost and a big burden on the environment. And several limitations are observed such as orientation of fibers and limited options of polymer and solvents, so many researchers try to develop more facile and more effective method for making nanofiber. In this chapter, recent developed fabrication methods, handspinning, direct writing, touch and brush spinning, are discussed and the advantages of each methods are described, respectively. They utilize a simple mechanical force instead of electrical force, which delivers great benefits to producing nanofiber such as orientation of fibers along with the force direction, reduction of every cost, availability of various options for selecting polymer and solvents, and a facility to design a pattern with high precision. Those innovative and novel methods will enable us to make functional nanofibers more effective than traditional methods; consequently, they will broaden the application of nanofibers

    Cells Attachment Property of PVA Hydrogel Nanofibers Incorporating Hyaluronic Acid for Tissue Engineering

    Get PDF
    In this work, we report the fabrication and cell affinity studies of the poly(vinyl alcohol) (PVA)/hyaluronic acid (HA) cross-linked nanofibers via electrospinning and post cross-linking. FT-IR and TGA analysis demonstrate that HA is not influenced by acid environment such as HCl vapor during cross-linking, and well incorporated into PVA nanofibers. Swelling behavior and cell adhesion of the PVA/HA hydrogel nanofibers are investigated and compared with pure PVA hydrogel nanofibers. It is expected that the nanofibrous PVA/HA hydrogel fibers could be a promising scaffold for cell culture and tissue engineering applications.ArticleJournal of Biomaterials and Nanobiotechnology. 2:353-360 (2011)journal articl

    Self-Assembled Core-Shell Poly(ethylene glycol)-POSS Nanocarriers for Drug Delivery

    Get PDF
    In this work, novel nanostructured core-shell poly (ethylene glycol) (PEG)-polyhedral oligosilsesquioxane (POSS) nanoparticles were used to encapsulate insulin as new drug delivery carriers. The morphologies, particle size and ? potential of th e pure nanostructured core-shell PEG-POSS and th e corresponding insulin-load ed PEG-POSS nanopar-ticles were investigated by transmission electron microscopy (TEM) and laser diffraction particle sizer. TEM analysis demonstrated that pure and insulin-loaded self-assembled PEG-POSS nanoparticles were of spherical shape with core-shell nanostructure, and were well-dispersed and uniform in size distribution. Insulin release test showed that in-sulin was well-protected in side PEG-POSS nanoparticles at gastric pH for 2 hrs, and was released at intestinal pH (pH 6 - 7) where the absorption and activation of the drug are necessary. We therefore believe that such nanostructured PEG-POSS nanoparticles could be useful as a potential carrier for insulin drug delivery systems.ArticleJournal of Biomaterials and Nanobiotechnology. 2:201-206 (2011)journal articl

    Application of Nanowires for Retinal Regeneration

    Get PDF
    Nanowires aim at developing advanced architectures are gaining popularity for damaged neural systems. The retina with a complicated structure is an essential part of our visual nervous system. Any disorder inside retina could lead to blindness due to irregularity in transferring neural signals to the brain. In recent years, the emergence of nanostructures, as well as nanowires, has provided a viable means for enhancing the regeneration of retinal. Nanowires with the ability to sense light and converting it to the electrical signals simulate the extracellular electrical properties, which are the newest nanostructures for the retinal applications. The different structure of nanowires has been examined in vitro, and several others are undergoing in vivo for vision recovery. Among the structures, core-shell nanowires and functionalized nanowires with gold nanoparticles attract the attention for the regeneration of retinal neural systems. Herein, subsequently provide an introduction to the anatomy of the retina, and retinal disorders, the latest progress in the regeneration of retina and vision using nanowires will be reviewed. Also, the different structures, including core-shell and functionalized nanowires with nanoparticles, will be examined. Eventually, the point of view and perspective of applying nanowire in retinal regeneration will be offered

    Catalytic N-oxidation of tertiary amines on RuO(2)NPs anchored graphene nanoplatelets

    Get PDF
    Ultrafine ruthenium oxide nanoparticles (RuO2NPs) with an average diameter of 1.3 nm were anchored on graphene nanoplatelets (GNPs) using a Ru(acac)3 precursor by a very simple dry synthesis method. The resultant material (GNPs–RuO2NPs) was used as a heterogeneous catalyst for the N-oxidation of tertiary amines for the first time. The transmission electron microscopy (TEM) images of the GNPs–RuO2NPs showed the excellent attachment of RuO2NPs on GNPs. The loading of Ru in GNPs–RuO2NPs was 2.68 wt%, as confirmed by scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). The X-ray photoelectron spectrum (XPS) and the X-ray diffraction pattern (XRD) of GNPs–RuO2NPs revealed that the chemical state of Ru on GNPs was +4. After the optimization of reaction conditions for N-oxidation of triethylamine, the scope of the reaction was extended to various aliphatic, alicyclic and aromatic tertiary amines. The GNPs–RuO2NPs showed excellent catalytic activity in terms of yields even at a very low amount of Ru catalyst (0.13 mol%). The GNPs–RuO2NPs was heterogeneous in nature, chemically as well as physically, very stable and could be reused up to 5 times.ArticleCATALYSIS SCIENCE & TECHNOLOGY. 4(7):2099-2106 (2014)journal articl
    • …
    corecore