93 research outputs found

    Hepatoprotective and Antioxidative Activities of Cornus officinalis against Acetaminophen-Induced Hepatotoxicity in Mice

    Get PDF
    The fruit of Cornus officinalis Sieb. et Zucc. is commonly prescribed in Asian countries as a tonic formula. In this study, the hepatoprotective effect of ethanolic extracts of the fruit of C. officinalis (ECO) was investigated in a mouse model of acetaminophen- (APAP-) induced liver injury. Pretreatment of mice with ECO (100, 250, and 500 mg/kg for 7 days) significantly prevented the APAP (200 mg/kg) induced hepatic damage as indicated by the serum marker enzymes (AST, ALT, and LDH). Parallel to these changes, ECO treatment also prevented APAP-induced oxidative stress in the mice liver by inhibiting lipid peroxidation (MDA) and restoring the levels of antioxidant enzymes (SOD, CAT, and HO-1) and glutathione. Liver injury and collagen accumulation were assessed using histological studies by hematoxylin and eosin staining. Our results indicate that ECO can prevent hepatic injuries associated with APAP-induced hepatotoxicity by preventing or alleviating oxidative stress

    A Phenome-Based Functional Analysis of Transcription Factors in the Cereal Head Blight Fungus, Fusarium graminearum

    Get PDF
    Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level

    A Putative Transcription Factor MYT2 Regulates Perithecium Size in the Ascomycete Gibberella zeae

    Get PDF
    The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head blight (FHB) in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia) are hypothesized to be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by many developmentally regulated genes. In this study, we selected a previously reported putative transcription factor containing the Myb DNA-binding domain MYT2 for an in-depth study on sexual development. The deletion of MYT2 resulted in a larger perithecium, while its overexpression resulted in a smaller perithecium when compared to the wild-type strain. These data suggest that MYT2 regulates perithecium size differentiation. MYT2 overexpression affected pleiotropic phenotypes including vegetative growth, conidia production, virulence, and mycotoxin production. Nuclear localization of the MYT2 protein supports its role as a transcriptional regulator. Transcriptional analyses of trichothecene synthetic genes suggest that MYT2 additionally functions as a suppressor for trichothecene production. This is the first study characterizing a transcription factor required for perithecium size differentiation in G. zeae, and it provides a novel angle for understanding sexual development in filamentous fungi

    A Putative Transcription Factor MYT1 Is Required for Female Fertility in the Ascomycete Gibberella zeae

    Get PDF
    Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene contains a Myb DNA-binding domain and is conserved in the subphylum Pezizomycotina of Ascomycota. The MYT1 protein fused with green fluorescence protein localized in nuclei, which supports its role as a transcriptional regulator. The MYT1 deletion mutant showed similar phenotypes to the wild-type strain in vegetative growth, conidia production and germination, virulence, and mycotoxin production, but had defect in female fertility. A mutant overexpressing MYT1 showed earlier germination, faster mycelia growth, and reduced mycotoxin production compared to the wild-type strain, suggesting that improper MYT1 expression affects the expression of genes involved in the cell cycle and secondary metabolite production. This study is the first to characterize a transcription factor containing a Myb DNA-binding domain that is specific to sexual development in G. zeae

    Emotion finds a way to users from designers: assessing product images to convey designer's emotion

    Get PDF
    Along with a growing interest in emotional design and pleasurable products, it is necessary to understand how designers are able to maintain emotional impacts of their design solutions throughout the design process, and how these solutions can find a way to evoke the intended emotional feeling of the users. The present study first examined emotional responses to early design sketches, and how these responses could be used to check if the emotional impacts of their early sketches were observed in a combinative way of cognitive-linguistic and physiological approaches. Based on the findings of the empirical study, we further discussed how the emotional differences of product images would be generated by product forms. We figured out that good form factors of early design sketches might elicit positive feelings and high arousal states, thereby incorporating semantically meaningful features in the product images

    Deep Residual Networks for User Authentication via Hand-Object Manipulations

    No full text
    With the ubiquity of wearable devices, various behavioural biometrics have been exploited for continuous user authentication during daily activities. However, biometric authentication using complex hand behaviours have not been sufficiently investigated. This paper presents an implicit and continuous user authentication model based on hand-object manipulation behaviour, using a finger-and hand-mounted inertial measurement unit (IMU)-based system and state-of-the-art deep learning models. We employed three convolutional neural network (CNN)-based deep residual networks (ResNets) with multiple depths (i.e., 50, 101, and 152 layers) and two recurrent neural network (RNN)-based long short-term memory (LSTMs): simple and bidirectional. To increase ecological validity, data collection of hand-object manipulation behaviours was based on three different age groups and simple and complex daily object manipulation scenarios. As a result, both the ResNets and LSTMs models acceptably identified users’ hand behaviour patterns, with the best average accuracy of 96.31% and F1-score of 88.08%. Specifically, in the simple hand behaviour authentication scenarios, more layers in residual networks tended to show better performance without showing conventional degradation problems (the ResNet-152 > ResNet-101 > ResNet-50). In a complex hand behaviour scenario, the ResNet models outperformed user authentication compared to the LSTMs. The 152-layered ResNet and bidirectional LSTM showed an average false rejection rate of 8.34% and 16.67% and an equal error rate of 1.62% and 9.95%, respectively

    Experience beyond knowledge: Pragmatic e-learning systems design with learning experience

    Get PDF
    With the growing demand in e-learning system, traditional e-learning systems have dramatically evolved to provide more adaptive ways of learning, in terms of learning objectives, courses, individual learning processes, and so on. This paper reports on differences in learning experience from the learner’s perspectives when using an adaptive e-learning system, where the learner’s knowledge or skill level is used to configure the learning path. Central to this study is the evaluation of a dynamic content sequencing system (DCSS), with empirical outcomes being interpreted using Csikszentmihalyi’s flow theory (i.e., Flow, Boredom, and Anxiety). A total of 80 participants carried out a one-way between-subject study controlled by the type of e-learning system (i.e., the DCSS vs. the non-DCSS). The results indicated that the lower or medium achievers gained certain benefits from the DCSS, whilst the high achievers in learning performance might suffer from boredom when using the DCSS. These contrasting findings can be suggested as a pragmatic design guideline for developing more engaging computer-based learning systems for unsupervised learning situation

    <i>Fusarium graminearum</i>におけるゼアラレノンの生合成機構と制御

    No full text
    corecore