7,018 research outputs found

    Fibers and fabrics for chemical and biological sensing

    Get PDF
    Wearable sensors can be used to monitor many interesting parameters about the wearer’s physiology and environment, with important applications in personal health and well-being, sports performance and personal safety. Wearable chemical sensors can monitor the status of the wearer by accessing body fluids, such as sweat, in an unobtrusive manner. They can also be used to protect the wearer from hazards in the environment by sampling potentially harmful gas emissions such as carbon monoxide. Integrating chemical sensors into textile structures is a challenging and complex task. Issues which must be considered include sample collection, calibration, waste handling, fouling and reliability. Sensors must also be durable and comfortable to wear. Here we present examples of wearable chemical sensors that monitor the person and also their environment. We also discuss the issues involved in developing wearable chemical sensors and strategies for sensor design and textile integration

    Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: the benchmarking case of Ca2_2CuO3_3

    Full text link
    In view of the continuous theoretical efforts aimed at an accurate microscopic description of the strongly correlated transition metal oxides and related materials, we show that with continuum quantum Monte Carlo (QMC) calculations it is possible to obtain the value of the spin superexchange coupling constant of a copper oxide in a quantitatively excellent agreement with experiment. The variational nature of the QMC total energy allows us to identify the best trial wave function out of the available pool of wave functions, which makes the approach essentially free from adjustable parameters and thus truly ab initio. The present results on magnetic interactions suggest that QMC is capable of accurately describing ground state properties of strongly correlated materials.Comment: Published in Physical Review

    Molecules with multiple personalities: how switchable materials could revolutionise chemical sensing

    Get PDF
    Worldwide, the demand for sensing devices that can conform with the requirements of large-scale wireless sensor network (WSN) deployments is rising exponentially. Typically, sensors should be very low cost, low power (essentially self-sustaining), yet very rugged and reliable. At present, functioning WSN deployments involve physical transducers only, such as thermistors, accelerometers, photodetectors, or flow meters, to monitor quantities like temperature, movement, light level and liquid level/flow. Remote, widely distributed monitoring of molecular targets remains relatively unexplored, except in the case of targets that can be detected directly using ‘non-contact’ techniques like spectroscopy. This paper will address the issues inhibiting the close integration of chemical sensing with WSNs and suggest strategies based on fundamental materials science that may offer routes to new sensing surfaces that can switch between different modes of behaviour (e.g. active-passive, expand-contract)

    Divergencia genética de tanaidáceos (Crustacea: Peracarida) con baja capacidad de dispersión

    Get PDF
    In this study, the phylogeographic patterns of nuclear, ribosomal and mtDNA gene fragments of five tanaidacean species (Zeuxo, Tanaidae) from the Atlantic, Pacific and Mediterranean Sea were investigated. We aimed to interpret results in the framework of current hypotheses on the distribution of small invertebrates with very limited dispersal ability. Evidence for a surprisingly high genetic divergence was found for intertidal tanaidaceans from the North Atlantic. This is a result of poor dispersal potential, as tanaidaceans have direct development, no pelagic stage, and very limited swimming capacity. However, lower genetic divergence was found between an intertidal tanaid species from the North Atlantic and two from the North Pacific, which suggests a scenario of recent colonization following the last glacial maximum. The species Zeuxo normani was found to be a species complex consisting, at least, of Z. normani (California), Z. cf. normani (Japan), Z. cf. normani (Australia), Z. sp. A (Korea), and Z. holdichi (Spain and France). Our results showed that traditional species identification underestimates tanaidacean diversity and that what have been previously perceived as reliable diagnostic morphological characters, are, however, variable and unreliable.En este estudio, investigamos los patrones filogeográficos de fragmentos de ADN nuclear, ribosómico y mitocondrial de 5 especies de tanaidáceos (Zeuxo, Tanaidae) del Atlántico, Pacífico y Mediterráneo. Nos propusimos interpretar los resultados en el marco de hipótesis sobre la distribución de pequeños invertebrados con limitada capacidad de dispersión. Encontramos evidencia de una sorprendentemente alta diferenciación genética para tanaidáceos del medio intermareal del Atlántico Norte. Esto es resultado de una limitada capacidad de dispersión, ya que los tanaidáceos poseen desarrollo directo, carecen de estadíos pelágicos, y una limitada capacidad natatoria. Sin embargo, encontramos una baja diferenciación genética para una especie de tanaidáceo del Atlántico Norte y dos del Pacífico Norte, lo que sugiere un escenario de reciente colonización tras la última glaciación. La especie Zeuxo normani constituye un complejo de especies que, al menos, agrupa a Z. normani (Califonia), Z. cf. normani (Japón), Z. cf. normani (Australia), Z. sp. A (Corea) y Z. holdichi (España y Francia). Nuestros resultados mostraron que la forma tradicional de identificar tanaidáceos subestima su diversidad y que lo que previamente se consideraron como caracteres morfológicos claramente diferenciadores son, sin embargo, variables y poco fiables

    Building a Library Search Infrastructure with Elasticsearch

    Get PDF
    This article discusses our implementation of an Elastic cluster to address our search, search administration and indexing needs, how it integrates in our technology infrastructure, and finally takes a close look at the way that we built a reusable, dynamic search engine that powers our digital repository search. We cover the lessons learned with our early implementations and how to address them to lay the groundwork for a scalable, networked search environment that can also be applied to alternative search engines such as Solr

    Behavioral Measures and their Correlation with IPM Iteration Counts on Semi-Definite Programming Problems

    Get PDF
    We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the (Renegar-) condition measure C(d) of the data instance, (iii) a measure of the near-absence of strict complementarity of the optimal solution, and (iv) the level of degeneracy of the optimal solution. We compute these measures for the SDPLIB suite problem instances and measure the correlation between these measures and IPM iteration counts (solved using the software SDPT3) when the measures have finite values. Our conclusions are roughly as follows: the aggregate geometry measure is highly correlated with IPM iterations (CORR = 0.896), and is a very good predictor of IPM iterations, particularly for problem instances with solutions of small norm and aspect ratio. The condition measure C(d) is also correlated with IPM iterations, but less so than the aggregate geometry measure (CORR = 0.630). The near-absence of strict complementarity is weakly correlated with IPM iterations (CORR = 0.423). The level of degeneracy of the optimal solution is essentially uncorrelated with IPM iterations
    corecore