6,434 research outputs found

    Special issue on smart interactions in cyber-physical systems: Humans, agents, robots, machines, and sensors

    Get PDF
    In recent years, there has been increasing interaction between humans and non‐human systems as we move further beyond the industrial age, the information age, and as we move into the fourth‐generation society. The ability to distinguish between human and non‐human capabilities has become more difficult to discern. Given this, it is common that cyber‐physical systems (CPSs) are rapidly integrated with human functionality, and humans have become increasingly dependent on CPSs to perform their daily routines.The constant indicators of a future where human and non‐human CPSs relationships consistently interact and where they allow each other to navigate through a set of non‐trivial goals is an interesting and rich area of research, discovery, and practical work area. The evidence of con- vergence has rapidly gained clarity, demonstrating that we can use complex combinations of sensors, artificial intelli- gence, and data to augment human life and knowledge. To expand the knowledge in this area, we should explain how to model, design, validate, implement, and experiment with these complex systems of interaction, communication, and networking, which will be developed and explored in this special issue. This special issue will include ideas of the future that are relevant for understanding, discerning, and developing the relationship between humans and non‐ human CPSs as well as the practical nature of systems that facilitate the integration between humans, agents, robots, machines, and sensors (HARMS).Fil: Kim, Donghan. Kyung Hee University;Fil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Matson, Eric T.. Purdue University; Estados UnidosFil: Kim, Gerard Jounghyun. Korea University

    Time Evolution of Entropy in Gravitational Collapse

    Full text link
    We study the time evolution of the entropy of a collapsing spherical domain wall, from the point of view of an asymptotic observer, by investigating the entropy of the entire system (i.e. domain wall and radiation) and induced radiation alone during the collapse. By taking the difference, we find the entropy of the collapsing domain wall, since this is the object which will form a black hole. We find that for large values of time (times larger than t/Rs8t/R_s\approx8), the entropy of the collapsing domain wall is a constant, which is of the same order as the Bekenstein-Hawking entropy.Comment: 9 pages, 6 figure

    In silico modeling of oxygen-enhanced MRI of specific ventilation.

    Get PDF
    Specific ventilation imaging (SVI) proposes that using oxygen-enhanced 1H MRI to capture signal change as subjects alternatively breathe room air and 100% O2 provides an estimate of specific ventilation distribution in the lung. How well this technique measures SV and the effect of currently adopted approaches of the technique on resulting SV measurement is open for further exploration. We investigated (1) How well does imaging a single sagittal lung slice represent whole lung SV? (2) What is the influence of pulmonary venous blood on the measured MRI signal and resultant SVI measure? and (3) How does inclusion of misaligned images affect SVI measurement? In this study, we utilized two patient-based in silico models of ventilation, perfusion, and gas exchange to address these questions for normal healthy lungs. Simulation results from the two healthy young subjects show that imaging a single slice is generally representative of whole lung SV distribution, with a calculated SV gradient within 90% of that calculated for whole lung distributions. Contribution of O2 from the venous circulation results in overestimation of SV at a regional level where major pulmonary veins cross the imaging plane, resulting in a 10% increase in SV gradient for the imaging slice. A worst-case scenario simulation of image misalignment increased the SV gradient by 11.4% for the imaged slice

    Membrane Interaction of Bound Ligands Contributes to the Negative Binding Cooperativity of the EGF Receptor

    Get PDF
    The epidermal growth factor receptor (EGFR) plays a key role in regulating cell proliferation, migration, and differentiation, and aberrant EGFR signaling is implicated in a variety of cancers. EGFR signaling is triggered by extracellular ligand binding, which promotes EGFR dimerization and activation. Ligand-binding measurements are consistent with a negatively cooperative model in which the ligand-binding affinity at either binding site in an EGFR dimer is weaker when the other site is occupied by a ligand. This cooperativity is widely believed to be central to the effects of ligand concentration on EGFR-mediated intracellular signaling. Although the extracellular portion of the human EGFR dimer has been resolved crystallographically, the crystal structures do not reveal the structural origin of this negative cooperativity, which has remained unclear. Here we report the results of molecular dynamics simulations suggesting that asymmetrical interactions of the two binding sites with the membrane may be responsible (perhaps along with other factors) for this negative cooperativity. In particular, in our simulations the extracellular domains of an EGFR dimer spontaneously lay down on the membrane in an orientation in which favorable membrane contacts were made with one of the bound ligands, but could not be made with the other. Similar interactions were observed when EGFR was glycosylated, as it is in vivo

    Neuroscience Attitudes, Exposure, and Knowledge among Counselors

    Get PDF
    The purpose of this study was to explore the neuroscience attitudes, exposure, myths, and knowledge among counselors at various stages of their careers. Descriptive statistics were used to highlight the current state of neuroscience attitudes, exposure, myths, and knowledge among a sample of counselors (N = 416). The results showed that participants had positive attitudes towards neuroscience, were exposed to neuroscience information through various methods, believed neuroscience should be integrated in over half of the counselor education curriculum, had high levels of neuroscience knowledge (85%), and had average levels of neuromyths endorsed (56%). The results provide insights that can guide the infusion of neuroscience into the counselor education curriculum
    corecore