53 research outputs found

    Dual Function of CD81 in Influenza Virus Uncoating and Budding

    Get PDF
    As an obligatory pathogen, influenza virus co-opts host cell machinery to harbor infection and to produce progeny viruses. In order to characterize the virus-host cell interactions, several genome-wide siRNA screens and proteomic analyses have been performed recently to identify host factors involved in influenza virus infection. CD81 has emerged as one of the top candidates in two siRNA screens and one proteomic study. The exact role played by CD81 in influenza infection, however, has not been elucidated thus far. In this work, we examined the effect of CD81 depletion on the major steps of the influenza infection. We found that CD81 primarily affected virus infection at two stages: viral uncoating during entry and virus budding. CD81 marked a specific endosomal population and about half of the fused influenza virus particles underwent fusion within the CD81-positive endosomes. Depletion of CD81 resulted in a substantial defect in viral fusion and infection. During virus assembly, CD81 was recruited to virus budding site on the plasma membrane, and in particular, to specific sub-viral locations. For spherical and slightly elongated influenza virus, CD81 was localized at both the growing tip and the budding neck of the progeny viruses. CD81 knockdown led to a budding defect and resulted in elongated budding virions with a higher propensity to remain attached to the plasma membrane. Progeny virus production was markedly reduced in CD81-knockdown cells even when the uncoating defect was compensated. In filamentous virus, CD81 was distributed at multiple sites along the viral filament. Taken together, these results demonstrate important roles of CD81 in both entry and budding stages of the influenza infection cycle

    第912回千葉医学会整形外科例会

    Get PDF
    <p>(A) Emission spectrum of CaAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>, Nd<sup>3+</sup> crystals curves depending on H<sub>3</sub>BO<sub>3</sub> concentration. (B) Decay curves depending on H<sub>3</sub>BO<sub>3</sub> concentration. (C) Magnified views of the graph in (B). (D) Decay curves in log scale depending on H<sub>3</sub>BO<sub>3</sub> concentration. (E) Relative initial intensity measured at 5s (relative values where the value of control sample #1 is 1.0) depending on H<sub>3</sub>BO<sub>3</sub> concentration.</p

    Recent Developments in Lanthanide-Doped Alkaline Earth Aluminate Phosphors with Enhanced and Long-Persistent Luminescence

    No full text
    Lanthanide-activated alkaline earth aluminate phosphors are excellent luminescent materials that are designed to overcome the limitations of conventional sulfide-based phosphors. The increasing research attention on these phosphors over the past decade has led to a drastic improvement in their phosphorescence efficiencies and resulted in a wide variety of phosphorescence colors, which can facilitate applications in various areas. This review article discusses the development of lanthanide-activated alkaline earth aluminate phosphors with a focus on the various synthesis methods, persistent luminescence mechanisms, activator and coactivator effects, and the effects of compositions. Particular attention has been devoted to alkaline earth aluminate phosphors that are extensively used, such as strontium-, calcium-, and barium-based aluminates. The role of lanthanide ions as activators and coactivators in phosphorescence emissions was also emphasized. Finally, we address recent techniques involving nanomaterial engineering that have also produced lanthanide-activated alkaline earth aluminate phosphors with long-persistent luminescence

    Development of catalytic reactor designs for enhanced CO oxidation.

    Get PDF
    The catalytic removal of pollutants including nitrogen oxides (NOx), hydrocarbons (HC's) and carbon monoxide (CO) in the exhaust of automobiles is generally performed by using monolithic supports coated with noble metal catalysts, notably platinum and rhodium (Pt/Rh) adsorbed onto a washcoat. This is typically achieved to within 90-98% conversion efficiency for average entry conditions (50<Re<400 at actual conditions), with pressure drops not exceeding 1.25-2 kN/m2. The monolith is a honeycomb structure, essentially composed of many parallel channels of square cross section. This therefore acts as a high surface area reactor. One of its drawbacks lies in the amount of precious metal requirements. With the increasing demand and price of these it is likely that in the future they may contribute to the cost of manufacture even more significantly. Detailed analysis shows that the overall rate of reaction of the monolith reactor is usually mass transfer rather than kinetically limited. Thus any boost in the mass transfer rate should increase conversion. Conversely for there to be any reduction in overall surface area or precious metal content there would have to be an increase in mass transfer rate. The effect of increasing mass transfer was studied by two methods namely by axially segmenting the ceramic monolith core sample (consisting of 62 cells/cm 2 of1.04 mm channels) and secondly by inserting static mixers into a catalyst coated pipe (ie."Active Transport Catalytic Reactor" (ATCR)). This was carried out for carbon monoxide oxidation over a commercially prepared catalyst supplied by Johnson Matthey. The intrinsic kinetics of this reaction were determined experimentally in a differential reactor. Conversions and pressure drops were measured for each system for varying Reynolds numbers from 73-440 (S.T.P.) in the channel and 160-2140 (S.T.P.) in the pipe, under stoichiometric reactant concentrations, and for steady state fully warmed up reactor conditions ranging from 250°C to 4(X)°C. A one dimensional model is presented and its predictions compared to the experimental data for conversion and outlet gas temperature. Good agreement between experimental and theoretical data for the ATCR was found using the one-dimensional model for the conditions investigated. Also the model was found to be sufficiently accurate in predicting monolith conversions (ie. less than 10% difference between experiment and theory) and exit gas temperatures (ie. average of 4% difference) for high temperatures of 371°C and above. Pressure drops were also successfully predicted for both segmented monoliths as well as ATCR systems. Monolith segmentation was found to be successful in both enhancing CO oxidation as well as reducing the total catalyst requirements with the result that up to 30% saving of catalyst was possible. A simple optimization process using the theoretical data for the ATCR showed that up to 65% saving in reactor surface area (and hence catalyst requirements) is possible. Thus the novel idea of carrying out heterogeneous reactions within an ATCR shows promising results and indeed there is much scope for future research and possible applications

    Recent development of computational cluster analysis methods for single-molecule localization microscopy images

    No full text
    With the development of super-resolution imaging techniques, it is crucial to understand protein structure at the nanoscale in terms of clustering and organization in a cell. However, cluster analysis from single-molecule localization microscopy (SMLM) images remains challenging because the classical computational cluster analysis methods developed for conventional microscopy images do not apply to pointillism SMLM data, necessitating the development of distinct methods for cluster analysis from SMLM images. In this review, we discuss the development of computational cluster analysis methods for SMLM images by categorizing them into classical and machine-learning-based methods. Finally, we address possible future directions for machine learning-based cluster analysis methods for SMLM data

    Development of Deep-Learning-Based Single-Molecule Localization Image Analysis

    No full text
    Recent developments in super-resolution fluorescence microscopic techniques (SRM) have allowed for nanoscale imaging that greatly facilitates our understanding of nanostructures. However, the performance of single-molecule localization microscopy (SMLM) is significantly restricted by the image analysis method, as the final super-resolution image is reconstructed from identified localizations through computational analysis. With recent advancements in deep learning, many researchers have employed deep learning-based algorithms to analyze SMLM image data. This review discusses recent developments in deep-learning-based SMLM image analysis, including the limitations of existing fitting algorithms and how the quality of SMLM images can be improved through deep learning. Finally, we address possible future applications of deep learning methods for SMLM imaging
    corecore