59 research outputs found

    Demand Layering for Real-Time DNN Inference with Minimized Memory Usage

    Full text link
    When executing a deep neural network (DNN), its model parameters are loaded into GPU memory before execution, incurring a significant GPU memory burden. There are studies that reduce GPU memory usage by exploiting CPU memory as a swap device. However, this approach is not applicable in most embedded systems with integrated GPUs where CPU and GPU share a common memory. In this regard, we present Demand Layering, which employs a fast solid-state drive (SSD) as a co-running partner of a GPU and exploits the layer-by-layer execution of DNNs. In our approach, a DNN is loaded and executed in a layer-by-layer manner, minimizing the memory usage to the order of a single layer. Also, we developed a pipeline architecture that hides most additional delays caused by the interleaved parameter loadings alongside layer executions. Our implementation shows a 96.5% memory reduction with just 14.8% delay overhead on average for representative DNNs. Furthermore, by exploiting the memory-delay tradeoff, near-zero delay overhead (under 1 ms) can be achieved with a slightly increased memory usage (still an 88.4% reduction), showing the great potential of Demand Layering.Comment: 14 pages, 16 figures. Accepted to the 43rd IEEE Real-Time Systems Symposium (RTSS), 202

    Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes

    Get PDF
    The perivascular niche (PVN) plays an essential role in brain tumor stem-like cell (BTSC) fate control, tumor invasion, and therapeutic resistance. Here, a microvasculature-on-a-chip system as a PVN model is used to evaluate the ex vivo dynamics of BTSCs from ten glioblastoma patients. BTSCs are found to preferentially localize in the perivascular zone, where they exhibit either the lowest motility, as in quiescent cells, or the highest motility, as in the invasive phenotype, with migration over long distance. These results indicate that PVN is a niche for BTSCs, while the microvascular tracks may serve as a path for tumor cell migration. The degree of colocalization between tumor cells and microvessels varies significantly across patients. To validate these results, single-cell transcriptome sequencing (10 patients and 21 750 single cells in total) is performed to identify tumor cell subtypes. The colocalization coefficient is found to positively correlate with proneural (stem-like) or mesenchymal (invasive) but not classical (proliferative) tumor cells. Furthermore, a gene signature profile including PDGFRA correlates strongly with the “homing” of tumor cells to the PVN. These findings demonstrate that the model can recapitulate in vivo tumor cell dynamics and heterogeneity, representing a new route to study patient-specific tumor cell functions

    Impaired Inflammatory Responses in Murine Lrrk2-Knockdown Brain Microglia

    Get PDF
    LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-α, IL-1β and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-κB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-κB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-κB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-κB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation

    Attenuation of ultrasonic shear waves in copper

    No full text
    The attenuation of circularly polarized shear waves propagating in the [001] direction in copper was calculated for external magnetic fields up to 32 kG. The attenuation by electrons on different regions of the Fermi surface was identified. This study used the Fermi surface calculated from the studies of M. R. Haise by L. T. Wood.Physics, Department o

    Cloud Energy Storage System Operation with Capacity P2P Transaction

    No full text
    Research on energy storage systems (ESS) is actively aiming to mitigate against the unreliability of renewable energy sources (RES), and ESS operation and management has become one of the most important research topics. Since installing ESS for each user requires high investment cost, a study on cloud ESS gains attention recently. Cloud ESS refers to an ESS that is logically shared by multiple users as if they have their own ESS in their premises. In this paper, we propose a new cloud ESS sharing technique that allows capacity P2P transactions among users. Since cloud ESS is a virtual facility that is linked to an actual ESS, it is easy for users to sell the unused storage capacity to other users or to buy additional capacity from other users during operation. We also propose a system that encourages users to completely entrust the cloud ESS operator and share the extra benefit with the operator and other users. To verify the proposed method, we demonstrate the benefit of capacity P2P transaction based on real year-round data of users
    corecore